基于空间连通特征和残差卷积神经网络的情绪脑电识别研究
作者:
作者单位:

1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,南京210023;2.南京邮电大学射频集成与微组装技术国家地方联合工程实验室,南京 210023

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61977039)。


Emotional EEG Recognition Using Spatial Connectivity Features and Residual Convolutional Neural Network
Author:
Affiliation:

1.College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.Nation-Local Joint Project Engineering Lab of RF Integration & Micropackage, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    脑电信号(Electroencephalogram, EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual convolutional neural network, SCF-RCNN)模型的情绪识别方法。该方法从经预处理的脑电信号中提取皮尔逊相关系数(Pearson correlation coefficient, PCC)、锁相值(Phase-locked value, PLV)和互信息(Mutual information, MI)作为空间连通特征,使用包含两个残差模块的卷积神经网络模型来提取情感信息。在SEED数据集上的实验结果显示,PLV构造的连接矩阵与脑电情绪关系更为密切,其平均准确率可达93.38%,标准差为3.35%。与传统算法相比,SCF-RCNN在情绪识别领域的分类任务中表现更为优越,表明该方法在情绪识别领域具有重要的应用潜力。

    Abstract:

    As an objective and direct source of information, electroencephalogram (EEG) is widely used in the task of emotion recognition. In order to extract the information implicit in the spatial connectivity features of EEG signals, this paper proposes an emotion recognition method based on the spatial connectivity features and residual convolutional neural network (SCF-RCNN) model. In this method, Pearson correlation coefficient (PCC), phase-locked value (PLV) and mutual information (MI) are extracted from the preprocessed EEG signals as spatial connectivity features, and a convolutional neural network model containing two residual modules is used to extract emotional information. Experimental results on the SEED dataset show that the connection matrix constructed by PLV is more closely related to EEG emotion, with an average accuracy of 93.38% and a standard deviation of 3.35%. Compared with traditional algorithms, SCF-RCNN performs better in classification tasks in the field of emotion recognition, showing its important application potential in the field of emotion recognition.

    参考文献
    相似文献
    引证文献
引用本文

张学军,付从伟.基于空间连通特征和残差卷积神经网络的情绪脑电识别研究[J].数据采集与处理,2025,40(4):1046-1054

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-28
  • 最后修改日期:2024-06-21
  • 录用日期:
  • 在线发布日期: 2025-08-15