基于扩张注意力与深度最优化校正的多视图三维重建网络
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院,南京 210044;2.杭州电子科技大学自动化学院,杭州 310018

作者简介:

通讯作者:

基金项目:

国家自然科学基金青年项目(62101275);国家自然科学基金面上项目(61971167)。


Multi-view 3D Reconstruction Network Based on Dilated Attention and Depth Optimal Correction
Author:
Affiliation:

1.School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    与CVP-MVSNet网络和CasMVSNet网络相比,MVSNet重建网络存在的内存消耗量问题降低了模型处理高分辨率图像时的内存消耗量以及重建点云的准确性误差,但是两者点云的完整性误差却很大。针对此问题,本文提出了基于扩张注意力与深度最优化校正的多视图三维重建网络DA-MVSNet。DA-MVSNet是以CasMVSNet作为基准网络,额外引入一个融合了深度可分离卷积的并行空洞卷积与注意力模块构成的特征增强网络,增强了重建网络对输入视图的全局特征捕获能力,提升了重建点云的完整度。为进一步提升输出深度图的精度,防止特征增强网络提取过多的视图非相关背景信息导致重建点云准确度的下降,在网络的输出部分还引入了一个基于非线性最小二乘的最优化校正机制模块。结果表明,DA-MVSNet重建网络在室内场景数据集DTU上运行得到的重建点云的准确性误差与完整性误差分别降低了2.5%和4.7%,具有较好的综合性能。但也由于额外引入了增强网络和校正机制,其内存和时间消耗均约高于CVP-MVSNet与CasMVSNet网络

    Abstract:

    The memory consumption issue in MVSNet reconstruction networks, compared with CVP-MVSNet and CasMVSNet networks, reduces memory usage when processing high-resolution images and improving the accuracy of reconstructed point clouds. However, both networks still exhibit significant errors in point cloud completeness. To address this issue, this paper proposes DA-MVSNet, a multi-view 3D reconstruction network based on dilated attention and depth optimal correction. DA-MVSNet uses CasMVSNet as the baseline network, with an additional feature enhancement network that integrates a parallel dilated convolution and attention module, incorporating the concept of depth-wise separable convolutions. This enhancement strengthens the network’s ability to capture global features of input views, improving point cloud completeness. To further enhance the accuracy of output depth maps and prevent the feature enhancement network from extracting irrelevant background information, which can degrade the accuracy of the reconstructed point cloud, an optimization correction mechanism based on nonlinear least squares is introduced at the output stage of the network. The results show DA-MVSNet reduces the accuracy and completeness errors of the reconstructed point cloud by 2.5% and 4.7%, respectively, on the indoor scene DTU dataset, achieving better overall performance. However, due to the additional feature enhancement network and correction mechanism, the memory and time consumption of DA-MVSNet are not very higher than those of CVP-MVSNet and CasMVSNet.

    参考文献
    相似文献
    引证文献
引用本文

徐蕾,雷有元,朱军,周杰,邵根富,张家铭.基于扩张注意力与深度最优化校正的多视图三维重建网络[J].数据采集与处理,2025,40(4):1023-1034

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-10-07
  • 最后修改日期:2025-03-29
  • 录用日期:
  • 在线发布日期: 2025-08-15