A Parameter-Sharing Multi-feature Map Interaction Model for EEG Classification
Author:
Affiliation:
School of Artificial Intelligence, Nanning Normal University, Nanning 530199, China
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
摘要:
脑电图(Electroencephalography,EEG)信号分类在情感识别和脑机接口(Brain-computer interface,BCI)应用中具有关键意义。提出了一种参数共享的多特征图内外交互模型(Cross-map token attention,CMTA)。采用时空特征卷积神经网络(Spatial-temporal convolutional neural network,STCNN)对脑电图进行处理,生成多个脑电图特征图,每张特征图被视为一个token,传入参数共享的多模态模块MT(MLP和Transformer),其中多层感知器(Multi-layer perceptron,MLP)用于捕捉特征图内部的交互关系,Transformer则实现特征图之间的信息交互,从而提取更丰富的特征。通过一维自适应池化和全连接层构成的自适应分类器(Adapt-Classifier)完成脑电图的分类。实验结果表明,该方法在情感识别SEED数据集上的分类精度为98.86%,Kappa值为0.982 9;在运动分类BCI Competition IV Dataset 2a数据集上的分类精度为81.20%,Kappa值为0.748 4;在运动分类BCI Competition IV Dataset 2b数据集上的分类精度为86.55%,Kappa值为0.735 2。实验结果验证了所提方法在脑电图分类任务中的优越性能,并展示了其在不同EEG数据集上的广泛适用性。
Abstract:
Electroencephalography (EEG) signal classification plays a crucial role in emotion recognition and brain-computer interface (BCI) applications. This paper proposes a parameter-sharing cross-map token attention (CMTA) model for intra- and inter-feature map interaction. Firstly, a spatial-temporal convolutional neural network (STCNN) is used to process EEG data, generating multiple EEG feature maps. Each feature map is treated as a token and fed into a parameter-sharing multi-modal module MT, which integrates a multi-layer perceptron (MLP) and a Transformer. The MLP captures intra-feature map interactions, while the Transformer enables information exchange between feature maps, thereby extracting richer features. Finally, an adaptive classifier (Adapt-Classifier) consisting of one-dimensional adaptive pooling and a fully connected layer is used to perform EEG classification. Experimental results show that the proposed method achieves a classification accuracy of 98.86% and a Kappa value of 0.982 9 on the SEED dataset for emotion recognition, an accuracy of 81.20% and a Kappa value of 0.748 4 on the BCI Competition IV Dataset 2a for motor imagery classification, and an accuracy of 86.55% and a Kappa value of 0.735 2 on the BCI Competition IV Dataset 2b. These results demonstrate the superior performance of the proposed method in EEG classification tasks and highlight its broad applicability across different EEG datasets.