基于3D多模态卷积网络与跨模态特征集成的阿尔茨海默症分类
作者:
作者单位:

1.山东师范大学物理与电子科学学院, 济南 250307;2.山东师范大学信息科学与工程学院, 济南 250307

作者简介:

通讯作者:

基金项目:

济南市市校融合发展战略工程项目(JNSX2023038)。


Alzheimer’s Disease Classification Based on 3D Multi-modal Convolutional Network and Cross-Modal Feature Integration
Author:
Affiliation:

1.School of Physics and Electronics, Shandong Normal University, Jinan 250307, China;2.School of Information Science and Engineering, Shandong Normal University, Jinan 250307, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多模态神经影像技术为阿尔茨海默症(Alzheimer’s disease, AD)的早期精准诊断提供了重要的技术支撑。然而,由于不同模态神经影像数据在成像原理和特征表达上存在固有异质性,模态间的信息融合面临挑战。针对这一问题,提出了一种基于3D ResNet架构的多模态融合网络(Multi-modal fusion network, MFN),用于AD的早期辅助诊断。该方法首先采用3D ResNet网络分别提取T1加权和T2加权磁共振图像的特征表示,然后设计了一种创新的跨模态特征集成模块(Cross-modal feature integration module, CFIM)。相较于多模态数据直接串联,导致维度增长无法自适应调整模态权重的问题,CFIM 采用分阶段融合策略,包括全局信息融合模块、局部特征学习模块和关键因素模块。最后,融合后的多模态特征通过全连接神经网络进行分类决策。相比早期拼接的固定权重叠加和后期融合的浅层聚合,该策略能更精准地筛选出疾病诊断相关的特征。通过在阿尔茨海默症神经影像倡议(ADNI)数据库上的实验结果表明,与现有方法相比,本文方法在AD分类任务中具有较高的准确率和显著优势,且消融实验进一步验证了各模块的有效性,为多模态神经影像分析提供了新的技术思路。

    Abstract:

    Multi-modal neuroimaging technology provides crucial technical support for the early and precise diagnosis of Alzheimer’s disease (AD). However, due to the inherent heterogeneity in imaging principles and feature representations across different neuroimaging modalities, the fusion of inter-modal information poses significant challenges. To address this issue, this study proposes a multi-modal fusion network (MFN) based on a 3D ResNet architecture for the early auxiliary diagnosis of AD. The proposed method first employs a 3D ResNet to separately extract feature representations from T1- and T2-weighted magnetic resonance images. Subsequently, an innovative cross-modal feature integration module (CFIM) is designed to overcome the limitations of direct concatenation. CFIM adopts a hierarchical fusion strategy, consisting of global information fusion module, local feature learning module and key factor module. Finally, the fused multimodal features are fed into a fully connected neural network for classification. Compared to early concatenation (fixed-weight fusion) and late fusion (shallow aggregation), this strategy more effectively identifies disease-relevant diagnostic features. Experiments conducted on the Alzheimer’s disease neuroimaging initiative (ADNI) database demonstrate that the proposed method achieves higher accuracy and superior performance in AD classification tasks compared to existing approaches. Ablation studies further validate the effectiveness of each module, offering new technical insights for multi-modal neuroimaging analysis.

    参考文献
    相似文献
    引证文献
引用本文

朱厚元,郑乐乐,商浩,臧雪峰,吴少琪,周广超,孙建德,乔建苹.基于3D多模态卷积网络与跨模态特征集成的阿尔茨海默症分类[J].数据采集与处理,2025,40(4):912-921

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-05-10
  • 最后修改日期:2025-07-07
  • 录用日期:
  • 在线发布日期: 2025-08-15