基于机器学习的脑影像基因组学分析方法综述
作者:
作者单位:

1.南京邮电大学计算机学院,南京 210023;2.南京航空航天大学人工智能学院,南京 211106;3.南京航空航天大学脑机智能技术教育部重点实验室,南京 211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62136004,62106104,62276130); 国家重点研发计划(2024YFC3308402); 南京邮电大学引进人才自然科学研究启动基金(NY223170); 南京邮电大学校级自然科学基金(NY224115); 中央高校基本科研业务费项目(NJ2024029)。


A Review of Machine Learning for Brain Imaging Genomic Analysis
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;3.Key Laboratory of Brain-Machine Intelligence Technology of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    脑影像基因组学是一个新兴的数据科学领域。在该领域中通过对脑影像数据与基因组数据(通常还结合其他生物标志物、临床数据及环境数据)进行综合分析,可以深入探究大脑的表型、遗传及分子特征,以及这些特征对正常和异常脑功能及行为的影响。鉴于机器学习在生物医学领域的作用日益重要,且脑影像基因组学相关文献迅速增长,本文对脑影像基因组学中机器学习方法进行了最新且全面的综述。本文首先回顾了脑影像基因组学的相关背景和基础工作;然后展示了基于多变量机器学习的脑影像基因组学关联研究的主要思想和建模,并提出了联合关联分析和结果预测的方法;最后对今后的工作进行了展望。

    Abstract:

    Brain imaging genomics is a burgeoning domain within data science, where an integrated analytical approach is applied to brain imaging and genomics data, frequently in conjunction with other biomarker, clinical, and environmental datasets. This strategy is employed to glean fresh insights into the phenotypic, genetic, and molecular features of the brain, along with their effects on both typical and atypical brain function and behavior. In light of the escalating significance of machine learning in biomedicine and the swiftly expanding corpus of literature in brain imaging genomics, this paper presents a current and exhaustive review of machine learning methodologies tailored for brain imaging genomics. Firstly, the related background and fundamental work in imaging genomics are reviewed. Then, we summarize the main idea and modelling in genetic-imaging association studies based on multivariate machine learning and present methods for joint association analysis and outcome prediction. Finally, this paper discusses some prospects for future work.

    参考文献
    相似文献
    引证文献
引用本文

汪美玲,刘青山,张道强.基于机器学习的脑影像基因组学分析方法综述[J].数据采集与处理,2025,40(4):869-886

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-06-21
  • 最后修改日期:2025-07-23
  • 录用日期:
  • 在线发布日期: 2025-08-15