弥散磁共振纤维束成像分割算法综述
作者:
作者单位:

1.电子科技大学信息与通信工程学院,成都 611731;2.南京理工大学计算机科学与工程学院,南京 210094;3.电子科技大学生命科学与技术学院,成都 611731;4.脑机接口与类脑智能四川省重点实验室,成都 611731

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2023YFE0118600);国家自然科学基金(62371107)。


Segmentation Methods for Diffusion Magnetic Resonance Imaging Tractography: A Survey
Author:
Affiliation:

1.School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;2.School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;3.School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;4.Sichuan Provincial Key Laboratory of Brain-Computer Interface and Brain-Inspired Intelligence, Chengdu 611731, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    弥散磁共振成像(Diffusion magnetic resonance imaging, dMRI)作为一种先进的医学成像技术,能够在宏观层面上对活体大脑白质连接进行重建。该技术为量化描述大脑结构连接提供了重要的工具,能够使用连接性或者组织微观结构指标进行量化分析。在过去的20年里,使用弥散磁共振纤维束成像研究大脑连接已经成为神经影像学研究的重要方向。纤维束成像分割则是在量化分析大脑连接时定义不同量化区域的关键,它能够识别对量化大脑结构连接有意义的白质通路,并实现跨受试者的白质通路的定量比较。本文对纤维束分割方法进行了回顾,并按其技术路线归纳为两大类:一类是针对特定解剖纤维束的分割方法,聚焦于具有明确结构定义的通路(如弓状束、锥体束),适用于任务导向型分析与临床导航;另一类是全脑纤维束分割方法,强调数据驱动或图谱导向的结构划分,用于构建大规模结构连接网络和开展全脑层级分析。此外,本文还探讨了各类方法在适用性、准确性、可重复性与计算成本等方面的权衡。尽管自动化分割技术近年来取得显著进展,但目前的方法仍然无法兼顾准确性、泛化性和效率,在解剖一致性、方法标准化及结果可解释性方面仍存在挑战。基于数据驱动的深度学习方法在纤维束分割领域迅速发展,表现出色,有望在上述方面取得更大突破。

    Abstract:

    Diffusion magnetic resonance imaging (dMRI), as an advanced medical imaging technique, enables the reconstruction of white matter connectivity in the living brain at the macroscopic level. This technology provides an important tool for the quantitative description of brain structural connectivity and allows for quantitative analysis using connectivity or microstructural indices. Over the past two decades, the use of dMRI tractography to study brain connectivity has become a major direction in neuroimaging research. Tract segmentation is key to defining different quantitative regions in the analysis of brain connectivity. It enables the identification of white matter pathways that are meaningful for quantifying brain structural connections and supports quantitative comparisons of white matter pathways across subjects. This paper reviews tract segmentation methods and categorizes them into two major types based on their technical approaches: One type targets specific anatomical fiber bundles, focusing on tracts with clearly defined structures (such as the arcuate fasciculus and corticospinal tract), and is suitable for task-oriented analysis and clinical navigation; the other type involves whole-brain tract segmentation methods, emphasizing data-driven or atlas-guided structural parcellation for the construction of large-scale structural connectivity networks and the implementation of whole-brain hierarchical analyses. In addition, this paper discusses the trade-offs of various methods in terms of applicability, accuracy, reproducibility, and computational cost. Although automated segmentation techniques have made significant progress in recent years, current methods still struggle to balance accuracy, generalizability and efficiency, and challenges remain in anatomical consistency, methodological standardization, and result interpretability. Data-driven deep learning methods have been rapidly developing in the field of tract segmentation, showing promising performance and holding potential for significant breakthroughs in the aforementioned areas.

    参考文献
    相似文献
    引证文献
引用本文

张蔚,李轶杰,吴烨,陈华富,张帆.弥散磁共振纤维束成像分割算法综述[J].数据采集与处理,2025,40(4):846-868

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-06-08
  • 最后修改日期:2025-07-12
  • 录用日期:
  • 在线发布日期: 2025-08-15