Multi-scale Spatio-Temporal Feature Learning for Motor Imagery in “Noisy Labels”
Author:
Affiliation:
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
摘要:
在运动想象脑电信号采集过程中,因受试者注意力不集中而未严格遵从提示进行对应的运动想象,导致所采集脑电数据与提示(标签)不一致,即出现“噪声标签”,降低了模型捕捉关键特征的能力,影响模型在新受试者上的泛化。基于此,本文提出一种“噪声标签”下多尺度时空特征学习的运动想象分类方法。首先,采用卷积神经网络提取脑电信号多尺度局部时间特征,降低个体间差异性影响;其次,在时空维度上分块划分特征图,作为Transformer模块输入,利用时空特征融合模块,优化全局时空特征;最后,引入对称交叉熵损失,将交叉熵计算方式扩展到所有类别,降低“噪声标签”的影响。在PhysioNet和BCI IV 2a运动想象数据集上的实验结果表明,本文方法的平均准确率优于其他方法,其中在PhysioNet数据集上引入对称交叉熵损失,二、三和四分类的平均准确率分别提升0.09%、0.65%和0.66%。此外,在不同比例的“噪声标签”干扰下,无需增加模型参数量和计算量,对称交叉熵损失就能改善模型的分类性能与鲁棒性。
Abstract:
During the collection process of electroencephalogram (EEG) signals for motor imagery, the subjects’ lack of concentration and failure to strictly follow instructions for corresponding motor imagery result in EEG data that does not match the instructions (labels), leading to the emergence of “noisy labels”. The presence of “noisy labels” reduces the model’s ability to capture key features and affects the model’s generalization on new subjects. Therefore, this paper proposes a method for motor imagery classification under “noisy labels” condition using multi-scale spatio-temporal feature learning. Firstly, a convolutional neural network is used to extract multi-scale local temporal features from EEG signals, reducing the impact of inter-subject variability. Secondly, feature maps are partitioned in spatio-temporal dimensions and served as input to the Transformer module, with a spatio-temporal feature fusion module used to optimize global spatio-temporal features. Finally, symmetric cross entropy loss is introduced, extending the calculation of cross entropy to all categories to reduce the impact of “noisy labels”. Experimental results on the PhysioNet and BCI IV 2a motor imagery datasets demonstrate that the average accuracy of the proposed method is superior to those of other methods. On the PhysioNet dataset, the introduction of symmetric cross entropy loss improves the average accuracy for two-, three-, and four-class classifications by 0.09%, 0.65%, and 0.66%, respectively. Moreover, symmetric cross entropy loss can improve the model’s classification performance and robustness under different proportions of “noisy labels” interference without increasing the model’s parameter quantity and computational complexity.