基于决策代价融合度量的不完备邻域决策粗糙集属性约简
作者:
作者单位:

1.四川师范大学数学科学学院, 成都 610066;2.四川师范大学智能信息与量子信息研究所, 成都 610066;3.四川师范大学计算机科学学院, 成都 610101;4.西华师范大学数学与信息学院, 南充 637009

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61976158); 四川省自然科学基金(2024NSFSC0486, 2024NSFSC0443); 四川省科技计划(2022ZYD0001); 教育部人文社科规划基金(23YJA630114)。


Attribute Reduction of Incomplete Neighborhood Decision Rough Sets Based on Decision-Cost Fusion Measures
Author:
Affiliation:

1.School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, China;2.Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, China;3.College of Computer Science, Sichuan Normal University, Chengdu 610101, China;4.School of Mathematics and Information, China West Normal University, Nanchong 637009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    属性约简依赖于知识粒化和不确定性度量,有助于智能识别。针对不完备连续型数据,邻域决策粗糙集诱导了属性约简,但相关的邻域关系需要优化改进,同时存在的决策代价值需要集成强化。本文提出一种新的邻域关系并组建3种决策代价融合度量,构造不完备邻域决策粗糙集并系统研究属性约简。首先,通过改进的距离函数引入不完备邻域关系,提出一种改进的不完备邻域决策粗糙集模型。然后,基于决策代价引入依赖度和邻域熵,采用乘法融合得到3种决策代价融合度量,研究粒化非单调性。进而,基于2种邻域关系和4种决策代价相关度量,采用属性重要度设计8种启发式约简算法。数据实验表明,本文所提的7种新算法中有5种算法具有较好的分类学习性能,改进了基础约简算法。

    Abstract:

    Attribute reduction relies on knowledge granulation and uncertainty measurement, thus facilitating intelligent recognition. For incomplete continuous data, neighborhood decision rough sets induce attribute reduction. However, the related neighborhood relation deserves optimal improvements, while the existing decision cost deserves integrated reinforcements. In this paper, a new neighborhood relation is proposed, and three decision-cost fusion measures are constructed, so new incomplete neighborhood decision rough sets are established and the attribute reduction is systematically researched. At first, an improved distance is introduced to produce an incomplete neighborhood relation, so improved rough sets on incomplete neighborhood are proposed. Then, the dependence degree and neighborhood entropy are introduced based on decision costs, so three fusion measures on decision costs are obtained by multiplication fusion, thus acquiring granulation non-monotonicity. Furthermore, eight heuristic reduction algorithms based on attribute importances are designed from two neighborhood relations and four relevant measures of decision costs. As finally verified by data experiments, the five algorithms out of the seven new algorithms have good performance of classification learning, thus improving the basic reduction algorithm.

    参考文献
    相似文献
    引证文献
引用本文

张万祥,张贤勇,杨霁琳,陈本卫.基于决策代价融合度量的不完备邻域决策粗糙集属性约简[J].数据采集与处理,2025,40(3):807-820

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-04-10
  • 最后修改日期:2024-08-17
  • 录用日期:
  • 在线发布日期: 2025-06-13