页岩气核心参数预测的异构异质数据多模态融合算法
作者:
作者单位:

1.西南石油大学电气信息学院,成都 610500;2.西南石油大学理学院,成都 610500;3.四川铁道职业学院机车车辆学院,成都 610074;4.中国石油集团川庆钻探工程有限公司工程技术部,成都 610056

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62006200);中国石油-西南石油大学创新联合体科技合作项目(2020CX020000);四川省科技计划支持项目(2022YFG0179)。


Multi-modal Fusion Algorithm for Heterogeneous Data of Shale Gas Core Parameters Prediction
Author:
Affiliation:

1.School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China;2.School of Sciences of SWPU, Southwest Petroleum University, Chengdu 610500, China;3.College of Railway Vehicle Engineering, Sichuan Railway College, Chengdu 610074, China;4.CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610056, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    不同于以图像为主导的传统多模态融合方法,工业生产中生产数据常以结构化数据为主,辅以少量的图像数据,但这两种异构数据都反映了页岩气核心参数特征,因其在数据维度存在巨大差异,导致异构数据难以实现特征融合。地层纵向结构化数据间存在异质性,运用常规深度学习方法预测核心参数存在较大误差。针对以上问题,提出一种异构异质数据多模态融合算法(Multi-modal fusion algorithm for heterogeneous data, MFH)。首先,设计了异构数据多模态融合策略,实现同一深度标签下的扫描电镜和测井参数数据特征对齐、提取和融合;其次,构建了异质数据特征拉近机制,通过构建正样本对使模型学习到同工区地层间的强异质性以及横向的非线性关系;最后,提出了异构数据特征交换方法,解决了丰富的测井数据与稀少的电镜图片的匹配问题,实现对核心参数精确连续预测。实验结果与主流深度模型预测结果对比,证明了本文方法具有实用性、有效性和可推广性。

    Abstract:

    Unlike traditional multi-modal fusion methods that are predominantly image-based, production data in industrial manufacturing are primarily structured data, with a small amount of image features. However, both types of heterogeneous data reflect the core parameters of shale gas. Due to the significant difference in data dimensions, it is challenging to achieve feature fusion of heterogeneous data. Additionally, there is heterogeneity among the stratified structured data, leading to substantial errors in predicting core parameters using conventional deep learning methods. To address these issues, this paper proposes a multi-modal fusion algorithm for heterogeneous data (MFH). Firstly, a multi-modal fusion strategy for heterogeneous data is designed to align, extract, and merge features of scanning electron microscopy and logging parameters under the same depth labels. Secondly, a mechanism for drawing heterogeneous data features closer is constructed to create positive sample pairs, enabling the model to learn about the strong heterogeneity between stratums in the same work area and the lateral nonlinear relationships. Finally, a method for exchanging features of heterogeneous data is introduced to solve the matching problem between abundant logging data and scarce electron microscope images, achieving accurate and continuous prediction of core parameters. Experimental results, compared with predictions from mainstream deep models, prove the practicality, effectiveness, and extensibility of the proposed scheme.

    参考文献
    相似文献
    引证文献
引用本文

罗浚七,汪敏,乔豁通,邱毅,张浩洋,孙活,谢浩宇.页岩气核心参数预测的异构异质数据多模态融合算法[J].数据采集与处理,2025,40(3):793-806

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-05-23
  • 最后修改日期:2024-08-15
  • 录用日期:
  • 在线发布日期: 2025-06-13