泛化增强与动态感知的结直肠息肉分割网络
作者:
作者单位:

1.华北理工大学人工智能学院,唐山063210;2.河北省工业智能感知重点实验室,唐山063210;3.华北理工大学附属医院,唐山063000

作者简介:

通讯作者:

基金项目:

唐山市人才项目(A202110011);北京市现代信息科学与网络技术重点实验室开放课题 (XDXX2301);华北理工大学杰出青年基金(JQ201715)。


Generalization Enhancement and Dynamic Perception of Colorectal Polyp Segmentation Network
Author:
Affiliation:

1.School of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China;2.Hebei Key Laboratory of Industrial Intelligent Perception, Tangshan 063210, China;3.The Affiliated Hospital of North China University of Science and Technology,Tangshan 063000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着计算机辅助医疗诊断系统和医学图像分割技术的快速发展,结直肠镜检查性能得到了极大的提升,可有效帮助临床医生对息肉病变作出快速准确的判断并制定治疗方案。然而,在临床实践中,息肉分割面临众多挑战,如不同患者的息肉所处肠道环境不同,息肉大小不同、形状各异等。为了应对这些挑战,提升结直肠息肉分割模型的泛化能力和学习能力,提出了一种泛化增强与动态感知网络(Generalization enhancement and dynamic perception network,GEDPNet)。GEDPNet使用金字塔视觉Tranformer(PVT_v2)作为主干,重点设计了泛化增强(Generalization enhancement,GE)模块、动态感知(Dynamic perception,DP)模块和级联聚合(Cascade aggregation,CA)模块。首先,GE模块创新性地从提取息肉域不变特征的角度来提升模型的泛化性,从而有效缓解不同患者的息肉所处肠道环境不同导致的分割性能不佳问题;同时,该模块还通过提取丰富的层内多尺度信息来应对息肉尺寸多样化的挑战。其次,DP模块能够有效地动态感知全局信息和局部信息,捕获息肉的语义位置信息和边界纹理等细节信息。最后,CA模块将不同层级的含有不同语义信息的多尺度特征有效聚合,保证息肉信息的完整性,进一步提升了分割性能。所提GEDPNet模型在5个息肉数据集Kvasir-SEG、CVC-ClinicDB、CVC-T、CVC-ColonDB和ETIS上进行了测试,mDice分别达到0.930、0.946、0.911、0.825和0.806;mIoU分别达到0.883、0.902、0.848、0.747和0.733;MAE分别达到0.019、0.005、0.005、0.025和0.013。此外,所提方法与20种经典及先进的息肉图像分割方法进行了性能比较,比经典息肉分割方法PraNet 的mIoU分别提高了 4.3%、5.3%、5.1%、10.7%和16.6% 。结果表明,本文所提的GEDPNet对肠道环境差异大、尺寸不一及形状各异的息肉具有较好的感知能力,可有效提升模型的息肉分割精度和泛化能力。

    Abstract:

    With the rapid development of computer-aided medical diagnosis systems and medical image segmentation technologies, the performance of colorectal endoscopy has been significantly improved, effectively helping clinicians make quick and accurate judgments on polyp lesions and formulate appropriate treatment plans. However, in clinical practice polyp segmentation faces numerous challenges, such as different intestinal environments in different patients, and varying sizes and shapes of polyps. To address these challenges and enhance the generalization and learning abilities, the generalization enhancement and dynamic perception network (GEDPNet) is proposed. GEDPNet utilizes the pyramid vision Transformer (PVT_v2) as its backbone and focuses on the design of three key modules: the generalization enhancement (GE) module, the dynamic perception (DP) module, and the cascade aggregation (CA) module. Firstly, the GE module innovatively improves the model’s generalization by extracting the polyp domain-invariant features, effectively alleviating the problem of poor segmentation caused by different intestinal environments of polyps in different patients. Meanwhile, the GE module also addresses the challenge of diverse polyp sizes by extracting rich multi-scale information intra each layer. Secondly, the DP module is able to dynamically perceive the global and local information, and then to effectively capture the position information as well as the boundaries or textures of polyps. Finally, the CA module can fully aggregate multi-scale features at different levels to obtain rich semantic information, ensuring the integrity of polyp information and further enhancing segmentation performance. To verify the effectiveness of the proposed GEDPNet, extensive experiments are conducted on five polyp datasets: Kvasir-SEG, CVC-ClinicDB, CVC-T, CVC-ColonDB, and ETIS. On these five polyp datasets, the mDice of the proposed GEDPNet achieves 0.930, 0.946, 0.911, 0.825, and 0.806, respectively; mIoU of that achieves 0.883, 0.902, 0.848, 0.747, and 0.733, respectively; and MAE of that achieves 0.019, 0.005, 0.005, 0.025, and 0.013, respectively. Furthermore, the proposed GEDPNet has been compared with 20 classical and advanced polyp image segmentation methods and it outperforms nearly all of them. Notably, mIoU of GEDPNet has been improved by 4.3%, 5.3%, 5.1%, 10.7%, and 16.6% respectively on these five polyp datasets compared to that of classical polyp segmentation method PraNet. These results indicate that the proposed GEDPNet exhibits superior dynamic perception capabilities for polyps with significant variations in intestinal environments, sizes, and shapes, so it can effectively enhance the polyp segmentation accuracy and model’s generalization.

    参考文献
    相似文献
    引证文献
引用本文

王森,史彩娟,蔡澳,王睿,于鑫阳,程旭东,陈伟彬.泛化增强与动态感知的结直肠息肉分割网络[J].数据采集与处理,2025,40(3):754-773

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-08-14
  • 最后修改日期:2025-01-09
  • 录用日期:
  • 在线发布日期: 2025-06-13