基于边缘特征引导学习的SAR目标检测
作者:
作者单位:

1.南京邮电大学计算机学院, 南京 210023;2.南京航空航天大学雷达成像与微波光子技术教育部重点实验室, 南京 211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62101280);江苏省自然科学基金(BK20210588);中国博士后科学基金(2023M731781);江苏省航空对地探测与智能感知工程中心开放基金(JSECF2023-05);雷达成像与微波光子技术教育部重点实验室(南京航空航天大学)基金(NJ20230005)。


SAR Target Detection Based on Edge Feature Guided Learning
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.Ministry of Education Key Laboratory of Radar Imaging and Microwave Photonics Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    合成孔径雷达(Synthetic aperture radar,SAR)图像目标通常具有不明显的边缘特征,且不同尺度下的目标边缘特征并不完全相同。边缘特征可以提供目标物体的形状和轮廓信息,增强模型对目标物体的定位能力。现有的SAR目标检测方法对于边缘特征的学习仍然不足,导致模型对于边缘特征的感知能力较弱。基于此,提出一种基于边缘特征引导学习(Edge feature guided learning, EFGL)的SAR目标检测方法,该方法基于FCOS(Fully convolutional one-stage)目标检测框架,主要利用目标边缘特征引导特征金字塔网络(Feature pyramid networks, FPN)的特征学习,通过在FPN中引入边缘算子模块,显式增强网络对不同尺度目标边缘特征的学习能力;另外,在多尺度特征融合过程中,构建边缘特征引导融合模块,利用融合边缘特征的空间注意力模块实现边缘特征引导的相邻层级特征融合。在MSAR数据集和SAR-Aircraft-1.0数据集上,所提方法在AP’07标准下分别达到了68.68%和67.44%的检测精度,比基础网络分别提升了1.34%和4.81%。与其他相关算法相比,所提方法能够更好地进行目标定位,且SAR目标检测性能更优。

    Abstract:

    Synthetic aperture radar (SAR) image targets typically exhibit subtle edge features, which can vary across different scales. Edge features provide crucial information about the shape and contour of target objects, improving the model’s localization capabilities. However, existing SAR object detection methods often underperform in learning edge features, limiting their ability to accurately perceive target edges. To address this, we propose a SAR target detection method based on edge feature guided learning (EFGL). This approach builds upon the fully convolutional one-stage (FCOS) object detection framework and leverages edge features to guide the learning process in feature pyramid networks (FPN). By integrating an edge operator module into FPN, the network’s capacity to learn multi-scale edge features is explicitly enhanced. Additionally, during multi-scale feature fusion, we introduce an edge feature-guided fusion module that incorporates a spatial attention mechanism to enable edge-guided fusion across adjacent feature levels. On the MSAR and SAR-Aircraft-1.0 datasets, the proposed method achieves detection accuracies of 68.68% and 67.44% under the AP’07 standard, showing improvements of 1.34% and 4.81% over the baseline network, respectively compared to other related algorithms, this method demonstrates superior target localization and overall performance in SAR target detection.

    参考文献
    相似文献
    引证文献
引用本文

倪康,孙笠焜,邹旻瑞.基于边缘特征引导学习的SAR目标检测[J].数据采集与处理,2025,40(3):699-710

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-04-26
  • 最后修改日期:2024-07-18
  • 录用日期:
  • 在线发布日期: 2025-06-13