基于双重对比学习模型的SAR自动目标识别背景去偏方法
作者:
作者单位:

1.南京理工大学电子工程与光电技术学院,南京 210094;2.北京遥感设备研究所,北京 100006;3.南京航空航天大学电子信息工程学院 ,南京 211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金重点项目(41930110);国家自然科学基金(62171224)。


Dual Contrastive Learning Model Based Background Debiasing in SAR ATR
Author:
Affiliation:

1.School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2.Beijing Institute of Remote Sensing Equipment, Beijing 100006, China;3.College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    对比学习作为一种自监督方法,可从无标记SAR图像中挖掘目标表征,是SAR自动目标识别(Automatic target recognition, ATR)的关键技术。但现有模型常将目标与背景整体表征,导致特征混杂背景干扰,从而削弱模型对目标的聚焦能力。为解决这一问题,提出了一种多分支双重对比学习模型。该模型在保留传统实例对比分支的基础上,创新性引入背景纠偏对比分支,构建了多分支对比学习框架;通过正负样本中目标与背景的随机组合策略,并结合ResNet50的主干网络以及自注意力池化增强语义特征提取,利用优化的双重对比损失函数改进目标特征学习,降低背景与目标的伪相关性;基于MSTAR数据集的Shapley值分析验证了该模型的有效性,目标分类结果证明该方法显著增强了模型特征提取的因果性,大大提升了SAR ATR算法的泛化性能。

    Abstract:

    Contrastive learning, as a self-supervised approach, enables the extraction of target representations from unlabeled SAR images, serving as a critical technique for automatic target recognition (ATR) in SAR. However, existing models often encode targets and backgrounds holistically, resulting in feature representations contaminated by background interference, which diminishes the model’s ability to focus on targets. To address this issue, this paper proposes a novel multi-branch dual contrastive learning model. Firstly, the model retains the conventional instance contrastive branch while introducing an innovative background correction contrastive branch, establishing a multi-branch contrastive learning framework. Secondly, through a random recombination strategy of targets and backgrounds in positive and negative samples, combined with the ResNet50 backbone network and self-attention pooling to enhance semantic feature extraction, an optimized dual contrastive loss function is employed to refine target feature learning and mitigate spurious correlations between backgrounds and targets. Finally, Shapley value analysis based on the MSTAR dataset validates the model’s effectiveness, and target classification results demonstrate that this approach significantly enhances the causality of feature extraction, substantially improving the generalization performance of SAR ATR algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张文青,王景,黄雪琴,田巳睿,何成,张劲东,李洪涛.基于双重对比学习模型的SAR自动目标识别背景去偏方法[J].数据采集与处理,2025,40(3):686-698

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-06-02
  • 最后修改日期:2024-10-22
  • 录用日期:
  • 在线发布日期: 2025-06-13