面向特种设备的大语言模型-知识图谱双向推理优化与幻觉抑制方法
作者:
作者单位:

1.福建省特种设备检验研究院,福州 350008;2.华侨大学工学院,泉州 362021

作者简介:

通讯作者:

基金项目:

福建省科技项目引导性项目(2023H0012)。


LLM-KG Bidirectional Inference Optimization and Hallucination Suppression for Special Equipment
Author:
Affiliation:

1.Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China;2.School of Engineering, Huaqiao University, Quanzhou 362021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    已有研究在特种设备领域构建了基于大语言模型(Large lanaguage model, LLM)的知识图谱(Knowledge graph, KG)智能问答系统,但受限于KG实体关系的不完备性,LLM在知识密集型任务中仍易产生幻觉。为抑制幻觉生成,提出融合KG推理技术,通过补全实体关系链路增强知识表示。此外,针对现有KG推理方法在语义关联与拓扑结构解析方面的不足,进一步引入一种基于LLM的动态推理机制,利用其深层语义理解能力自动生成高阶逻辑规则,实现KG的精准拓展,从而构建LLM与KG的双向协同优化机制。实验结果表明,该方法在Family、Kinship与UMLS这3个数据集上的平均倒数排名(Mean reciprocal rank, MRR)、首位命中率(First hit rate, Hits@1)和前10位命中率(Ten hit rate, Hits@10)均显著优于基线模型。

    Abstract:

    Existing studies have constructed knowledge graph (KG) intelligent question-answering systems based on large language models (LLMs) in the field of special equipment. However, limited by the inincomplete entity relationships of KG, LLMs are still prone to hallucination in knowledge-intensive tasks. To suppress the generation of hallucinations, the fusion KG reasoning technology is proposed to enhance the knowledge representation by completing the entity relationship links. Furthermore, in view of the deficiencies of the existing KG reasoning methods in semantic association and topological structure parsing, a dynamic reasoning mechanism based on LLM is further introduced. By leveraging its deep semantic understanding ability, high-order logic rules are automatically generated to achieve the precise expansion of KG, thereby constructing a bidirectional collaborative optimization mechanism between LLM and KG. The results show that this method significantly outperforms the baseline model in terms of mean reciprocal rank (MRR), first hit rate (Hits@1), and top ten hit rate (Hits@10) on the Family, Kinship, and UMLS datasets.

    参考文献
    相似文献
    引证文献
引用本文

郑强,许振彬.面向特种设备的大语言模型-知识图谱双向推理优化与幻觉抑制方法[J].数据采集与处理,2025,40(3):647-658

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-03-15
  • 最后修改日期:2025-04-20
  • 录用日期:
  • 在线发布日期: 2025-06-13