通信网络与AI大模型融合发展研究综述
作者:
作者单位:

1.中国电子科技集团公司第五十二研究所,杭州 310012;2.智能博弈重点实验室,北京 100091

作者简介:

通讯作者:

基金项目:


Review on Integrated Development of Communication Networks and Large-Scale AI Models
Author:
Affiliation:

1.The 52nd Research Institute, China Electronics Technology Group Corporation, Hangzhou 310012, China;2.State Key Laboratory of Intelligent Game, Beijing 100091, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着生成式AI技术的快速发展,特别是大模型领域的突破,学术界和产业界正积极寻求AI大模型与通信网络的深度融合。本文致力于深入探索这一新兴领域,通过梳理最新的相关研究进展,全面剖析如何通过AI大模型提升通信网络的智能化水平,以及如何利用通信网络增强AI大模型的效能。首先,介绍了基于Transformer的大模型主流架构,阐述了大模型的训练过程和智能涌现机制。随后,分析了AI大模型在网络设计、诊断、配置、安全和网络语言理解以及规范分析方面的智能化应用,并讨论了相关的技术实现手段。此外,探讨了通信网络在支撑AI大模型训练、推理和部署中的关键作用,重点关注基于云边协同的分布式大模型构建技术和多智能体大模型网络构建方案。最后,提出了若干亟待解决的关键研究议题,并对未来研究方向进行了展望。

    Abstract:

    With the rapid development of generative AI technologies, especially breakthroughs in the field of large language models (LLMs), both academia and industry are actively seeking deeper integration between these large-scale AI models and communication networks. This paper aims to explore this emerging field in depth by reviewing the latest research advancements. It provides a comprehensive analysis of how LLMs can enhance the intelligence of communication networks and how communication networks can improve the performance of LLMs. First, the paper introduces the mainstream Transformer-based architectures of LLMs, elaborating on their training processes and the mechanism of intelligent emergence. It then analyzes the intelligent applications of LLMs in network design, diagnostics, configuration, security, network language understanding, and specification analysis, and discusses the corresponding technical implementation methods. Furthermore, the paper explores the crucial role of communication networks in supporting the training, inference, and deployment of LLMs, with a focus on distributed LLM construction technologies based on cloud-edge collaboration and multi-agent LLM network construction solutions. Finally, the paper identifies several key research challenges that remain to be addressed and provides insights into future research directions.

    参考文献
    相似文献
    引证文献
引用本文

瞿崇晓,唐宇波,吴高洁,范长军,张永晋,刘硕.通信网络与AI大模型融合发展研究综述[J].数据采集与处理,2025,40(3):585-602

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-07-29
  • 最后修改日期:2024-11-06
  • 录用日期:
  • 在线发布日期: 2025-06-13