基于强化学习与变权组合模型的EV充电需求功率预测方法
作者:
作者单位:

1.上海海事大学物流工程学院,上海201306;2.南京信息工程大学自动化学院,南京210044;3.大数据分析与智能系统江苏省高校重点实验室,南京210044;4.大气环境与装备技术协同创新中心,南京210044;5.浙江经济职业技术学院汽车技术学院,杭州 310018

作者简介:

通讯作者:

基金项目:

江苏省青蓝工程项目(R2023Q07),浙江省自然科学基金(ZJMD25D050002)。


Prediction Method of EV Charging Demand Power Based on Reinforcement Learning and Variable Weight Combination Model
Author:
Affiliation:

1.Logistics Engineering College,Shanghai Maritime University, Shanghai 201306,China;2.College of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;3.Jiangsu Provincial University Key laboratory of Big Data Analysis and Intelligent Systems, Nanjing 210044, China;4.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, China;5.School of Automotive Technology, Zhejiang Technical Institute of Economics, Hangzhou 310018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    当电动汽车(Electric vehicle,EV)与充电桩连接时,精确预测电动汽车动力电池组的充电需求功率,对于防止电池组过充电至关重要。由于电池组物理模型的复杂性使基于其充电需求功率预测方法通常难以构建,且实时性不高。此外,单一预测模型的预测精度偏低。针对上述问题,结合充电数据与机器学习,提出一种基于强化学习与变权组合模型的EV充电需求功率预测方法。在传统灰狼优化算法的基础上,将混沌映射、精英反向学习策略相结合以提高初始种群的质量,利用强化学习的动态权重策略更新灰狼个体位置来优化最小二乘支持向量机(Least square support vector machine, LSSVM)算法中的参数;通过基于时变权重分配的变权组合方法合理分配极限学习机预测模型与改进LSSVM预测模型的权重,解决单一预测模型方法的不足;采用电动汽车的实际充电数据对所提预测算法进行验证,新方法相较于其他3种传统方法在预测精度上分别提高了4.75%、3.84%和0.38%。

    Abstract:

    When an electric vehicle (EV) is connected to a charging pile, it is very important to accurately predict the charging demand power of the battery pack of the EV to prevent the battery pack from being overcharged. Due to the complexity of the physical model of battery pack, it is usually difficult to build a power prediction method based on it, and its real-time performance is not high. In addition, the prediction accuracy of a single prediction model is low. Aiming at the above problems, combining charging data with machine learning, this paper proposes an EV charging demand power prediction method based on reinforcement learning (RL) and variable weight combination model. Firstly, based on the traditional grey wolf optimization (GWO) algorithm, chaos mapping and elite reverse learning strategy are combined to improve the quality of the initial population, and the dynamic weight strategy of reinforcement learning is used to update the individual position of grey wolf to optimize the parameters in the least square support vector machine (LSSVM) algorithm. Then, the weights of the extreme learning machine prediction model and the improved LSSVM prediction model are reasonably distributed by the variable weight combination method based on time-varying weight distribution, so as to solve the shortcomings of the single prediction model method. Finally, the actual charging data of electric vehicles are used to verify the proposed prediction algorithm. Compared with the other three traditional methods, the prediction accuracy of the new method is improved by 4.75%, 3.84% and 0.38%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

宋宗仁,葛泉波,李春喜.基于强化学习与变权组合模型的EV充电需求功率预测方法[J].数据采集与处理,2025,40(2):530-544

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-05-18
  • 最后修改日期:2024-07-14
  • 录用日期:
  • 在线发布日期: 2025-04-11