基于麻雀搜索算法的混合神经网络模型及其血糖预测应用
作者:
作者单位:

1.南京邮电大学计算机学院、软件学院、网络空间安全学院,南京210023;2.江苏省高性能计算与智能处理工程研究中心,南京 210023

作者简介:

通讯作者:

基金项目:

江苏省科技支撑计划项目(BE2019740); 江苏省六大人才高峰高层次人才项目(RJFW-111);江苏鱼跃医疗设备股份有限公司科技项目(2022外017);江苏省研究生实践创新计划项目(SJCX23_0274)。


Hybrid Neural Network Model Based on Sparrow Search Algorithm and Its Application in Blood Glucose Prediction
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    糖尿病是当今危害人类健康的常见疾病之一,有效管理和控制血糖对患者至关重要。传统的血糖预测模型大多为单一的深度学习模型,存在精度不足或效率太低的缺陷,制约了其在实际应用中的效果,为此,本文提出了一种基于麻雀搜索的混合神经网络模型,将其应用到血糖预测中。该模型结合了时域卷积网络(Temporal convolutional network,TCN)和门控循环单元(Gated recurrent unit,GRU),是基于端到端方式训练的时序神经网络,根据患者的血糖水平历史记录预测血糖。为确保该模型的泛化能力,使用两个不同来源的数据集进行验证。首先,对多源时序监测数据的特征采样频率进行设定,时间间隔为5 min,接着对数据做平滑处理和标准化,并通过TCN对时序数据捕捉时序模式和依赖特征;然后通过构建基于注意力机制的GRU(GRU-Attention)模型进一步提取特征并建模;最后使用麻雀搜索算法对TCN和GRU-Attention模型进行超参数优化,实现血糖预测模型。为了证明本文所提模型的有效性,将其预测结果与其他模型进行对比,包括LSTM、ARIMA和RNN等。研究结果表明,提出的基于麻雀搜索算法的TCN和GRU-Attention模型在血糖值预测任务中表现良好,两个数据集的均方根误差(Root mean square error,RMSE)和平均绝对误差(Mean absolute error, MAE)分别为0.552和0.402、0.531和0.388,均优于其他模型。

    Abstract:

    Diabetes is one of the most common diseases that endanger human health. Effective management and control of blood sugar is very important for patients. Traditional blood glucose prediction models are mostly single deep learning models, which have the defect of insufficient accuracy or low efficiency, restricting their effect in practical application. Therefore, a hybrid neural network model based on sparrow search is proposed and applied to blood glucose prediction. The proposed model combines a temporal convolutional network (TCN) and a gated recurrent unit (GRU), and it is a sequential neural network trained in an end-to-end manner to predict blood glucose based on a patient’s blood glucose level history. In order to ensure the generalization ability of the model, data sets from two different sources are used for validation. Firstly, the feature sampling frequency of multi-source timing monitoring data is set at a time interval of 5 min, the data is smooth-processed and standardized, and the timing pattern and dependency characteristics are captured by TCN. Then, by constructing a GRU model based on the attention mechanism (GRU-Attention), features are further extracted and modeled. Finally, the sparrow search algorithm is used to optimize the hyperparameters of the TCN and GRU-attention models to realize the blood glucose prediction model. To prove the validity of the proposed model, its prediction results are compared with those of other models, including LSTM, ARIMA, RNN, etc. The results show that the proposed TCN and GRU-Attention models based on the sparrow search algorithm perform well in the task of predicting blood glucose value. The root mean square error (RMSE) and mean absolute error (MAE) of the two datasets are 0.552 and 0.402, 0.531 and 0.388, respectively, which are all better than other models.

    参考文献
    相似文献
    引证文献
引用本文

徐鹤,许硕洋,季一木.基于麻雀搜索算法的混合神经网络模型及其血糖预测应用[J].数据采集与处理,2025,40(2):485-500

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-01-15
  • 最后修改日期:2024-04-11
  • 录用日期:
  • 在线发布日期: 2025-04-11