基于动态渐进融合的无人机海上救援目标检测算法
作者:
作者单位:

1.江西理工大学电气工程与自动化学院,赣州 341000;2.多维智能感知与控制江西省重点实验室,赣州 341000;3.江西省生态文明研究院,南昌 330046

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62001202);江西省自然科学基金(20224BAB202036);江西省教育厅科学技术重点研究项目(GJJ2200805)。


Object Detection Algorithm for UAV Maritime Rescue Based on Dynamic Progressive Fusion
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China;2.Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, China;3.Jiangxi Research Academy of Ecological Civilization, Nanchang 330046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    无人机(Unmanned aerial vehicle,UAV)目标检测在海上救援任务中发挥着重要作用。然而,由于无人机空中拍摄的视角和高度多变,检测目标存在多尺度变化。此外,阳光照射海面产生的耀斑会造成误检现象。基于上述问题,为满足无人机实时目标检测的算法轻量化需求,本文以YOLOv8n为基准网络,提出一种基于动态渐进融合的轻量级无人机海上救援目标检测算法(Dynamic progressive fusion YOLO,DPF-YOLO)。首先,提出轻量级冗余信息提取模块(Redundant information extraction module,RIEM),通过减少特征图中的冗余信息,突出关键特征,避免耀斑误检问题。其次,提出动态多尺度特征提取模块(Dynamic multi-scale feature extraction module,DMFEM),通过动态调整感受野大小以适应不同尺度的目标,增强多尺度特征表达能力。最后,结合DMFEM模块提出动态渐进融合网络(Dynamic progressive fusion network,DPFNet),通过渐进式融合结构,减少非相邻层间不同尺度目标的语义差异,增强多尺度特征融合效果。DPF-YOLO设计为P2、P3和P4检测层结构以适应海上救援任务中不同尺度的目标,丰富多尺度信息,增强对小目标的特征提取。在SeaDronesSee v2数据集上的实验结果表明,DPF-YOLO以仅1.19M的参数量实现了mAP0.5=72.2%的检测精度,较基准网络YOLOv8n参数量降低60.5%,召回率提升12.4%,精度提升8.2%。在VisDrone数据集上的泛化性实验结果表明,DPF-YOLO具有较好的泛化能力。

    Abstract:

    Unmanned aerial vehicle (UAV) object detection plays a crucial role in maritime rescue missions. However, the varying perspectives and altitudes inherent in UAV aerial photography lead to multi-scale variations in object individuals and vessels. Additionally, the glare resulting from sunlight reflecting off the sea surface can cause false detection issues. To address these challenges and meet the lightweight requirements of real-time object detection algorithms for UAVs, this paper proposes a lightweight UAV maritime rescue object detection algorithm based on dynamic progressive fusion (DPF-YOLO), using YOLOv8n as the baseline network. Firstly, we introduce a lightweight redundant information extraction module (RIEM) that reduces redundant information in feature maps, highlighting key features to mitigate false detections caused by glare. Secondly, we propose a dynamic multi-scale feature extraction module (DMFEM) that dynamically adjusts the receptive field to accommodate objects of varying scales, enhancing multi-scale feature representation capabilities. Finally, by integrating the DMFEM module, we develop a dynamic progressive fusion network (DPFNet). This network employs a progressive fusion structure to reduce semantic differences between non-adjacent layers with objects of different scales, thereby improving multi-scale feature fusion. DPF-YOLO is designed with P2, P3 and P4 detection layer structure to accommodate the object sizes in maritime rescue scenarios, enrich multi-scale information, and enhance feature extraction for small objects. Experimental results on the SeaDronesSee v2 dataset demonstrate that DPF-YOLO achieves a detection accuracy of mAP0.5 = 72.2% with only 1.19 M of parameters. Compared to the baseline network YOLOv8n, DPF-YOLO reduces the number of parameters by 60.5%, increases the recall rate by 12.4%, and improves precision by 8.2%. The generalization experimental results on the VisDrone dataset demonstrate that DPF-YOLO possesses excellent generalization capabilities.

    参考文献
    相似文献
    引证文献
引用本文

黄绿娥,于晓伟,鄢化彪,毛玉婷.基于动态渐进融合的无人机海上救援目标检测算法[J].数据采集与处理,2025,40(2):334-348

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-03-11
  • 录用日期:
  • 在线发布日期: 2025-04-11