基于多维混沌映射的复合型部分随机测量矩阵构造算法
作者:
作者单位:

1.云南大学信息学院,昆明 650500;2.云南省高校物联网技术及应用重点实验室,昆明 650500

作者简介:

通讯作者:

基金项目:

云南大学研究生科研创新项目(KC-23236074);云南大学大学生科技创新类项目(202307136)。


Algorithm for Constructing Compound Partial Random Measurement Matrices Based on Multidimensional Chaotic Mapping
Author:
Affiliation:

1.School of Information Science and Engineering, Yunnan University, Kunming 650500, China;2.Yunnan Provincial Key Laboratory of Internet of Things Technology and Application in Universities, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    测量矩阵的构造是影响压缩感知技术重构性能的重要环节。针对随机性测量矩阵高存储成本以及确定性矩阵较难满足约束等距性(Restricted isometric property, RIP)特性的问题,提出了一种基于混沌映射构造测量矩阵的改进方法,将随机高斯矩阵、确定性矩阵和混沌序列相结合,充分利用随机高斯矩阵少量测量数和混沌映射较低相关性的优势。同时,分析了混沌序列的相空间特性、测量矩阵的RIP特性、以及构造优化测量矩阵的计算复杂度。最后,仿真实验对比了随机高斯矩阵、托普利兹矩阵和现有的复合型矩阵。结果表明,在一维随机信号的相对误差、成功重构概率及信噪比的指标上,所提优化测量矩阵均优于其他3种矩阵;在二维图像的重构时间复杂度、峰值信噪比、结构相似性指数和平均结构相似性指数的指标上,所提优化测量矩阵也均有一定的提升,表现出更好的重构性能和良好的应用价值。

    Abstract:

    The construction of the measurement matrix is a crucial factor influencing the reconstruction performance of compressive sensing techniques. To address the high storage cost of random measurement matrices and the difficulty in satisfying the restricted isometric property (RIP) with deterministic matrices, an improved method for constructing measurement matrices based on chaotic mapping is proposed. This method combines the random Gaussian matrix with the deterministic matrix and chaotic sequences, taking full the advantages of a small number of measurements from random Gaussian matrices and the lower correlation provided by chaotic mappings. Simultaneously, an analysis is conducted on the phase space characteristics of chaotic sequences, the RIP properties of measurement matrices, and the computational complexity involved in constructing optimized measurement matrices. Finally, simulation experiments compare random Gaussian matrices, Toeplitz matrices, and existing composite matrices. The results show that the proposed optimized measurement matrices outperform the other three types of matrices in terms of relative error, success reconstruction probability, and signal-to-noise ratio for one-dimensional random signals. Additionally, these optimized measurement matrices also exhibit improvements in the reconstruction time complexity, peak signal-to-noise ratio, structural similarity index, and mean structural similarity index for two-dimensional images, indicating better reconstruction performance and significant practical value.

    参考文献
    相似文献
    引证文献
引用本文

陈兴兰,鲁进,张亚楠.基于多维混沌映射的复合型部分随机测量矩阵构造算法[J].数据采集与处理,2025,40(1):258-272

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-03
  • 最后修改日期:2024-05-23
  • 录用日期:
  • 在线发布日期: 2025-02-23