融合多核学习和多源特征的胰腺囊性肿瘤分类方法
作者:
作者单位:

1.上海理工大学健康科学与工程学院,上海 200093;2.长海医院影像科,上海 200434

作者简介:

通讯作者:

基金项目:

国家自然科学基金(81871352)。


Classification of Pancreatic Cystic Neoplasms by Fusion of Multi-kernel Learning and Multi-source Features
Author:
Affiliation:

1.School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China;2.Department of Radiology, Changhai Hospital, Shanghai 200434, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    胰腺囊性肿瘤的良恶性分类对于医学决策至关重要,本文致力于提高胰腺囊性肿瘤的分类准确性,以辅助医生更精确地制定诊疗方案。基于影像组学技术和ResNet50神经网络,提出了融合多核学习和多源特征的胰腺囊性肿瘤分类方法,其关键步骤包括特征筛选、核矩阵融合及构建分类模型。首先采用最小绝对收缩与选择算子(Least absolute shrinkage and selection operator, LASSO)进行特征筛选,减少冗余特征,提高模型的泛化能力;然后选取经过特征筛选的多源特征,通过在基础核函数中进行特征映射,构建多源特征的基础核矩阵,优化选取核矩阵的权重系数,并加权相加这些基础核矩阵以形成融合的核矩阵;最后,利用支持向量机(Support vector machine,SVM)分类器对胰腺浆液性和黏液性囊性肿瘤进行分类。这一过程的关键在于,SVM可以利用核矩阵在高维空间中内积,在高维空间中寻找一个超平面来分类数据,而融合的核矩阵中包含了经过特征映射的多源信息,可以提供更高维度和更复杂的特征表示。实验结果表明,该方法在胰腺囊性肿瘤良恶性分类任务中取得了显著的性能提升,可为医生提供更可靠的辅助信息,具有显著的临床应用潜力。

    Abstract:

    The classification of pancreatic cystic neoplasms into benign and malignant categories is crucial for medical decision-making. This paper is dedicated to enhancing the accuracy of pancreatic cystic neoplasms classification to assist physicians in formulating more precise diagnostic and therapeutic plans. Utilizing radiomics technology and the ResNet50 neural network, a novel classification method for pancreatic cystic neoplasms is proposed, integrating multi-kernel learning and multi-source feature fusion. The key steps of this method include feature selection, kernel matrix fusion, and the construction of the classification model. Feature selection is performed using the least absolute shrinkage and selection operator (LASSO) to reduce redundant features and improve the model’s generalization ability. Subsequently, multi-source features, screened through feature selection, are mapped in basic kernel functions to construct basic kernel matrices for multi-source features. The weights of these kernel matrices are then optimized and summed up to form a fused kernel matrix. Finally, a support vector machine (SVM) classifier is utilized to categorize pancreatic serous and mucinous cystic tumors. The significance of this process lies in SVM’s ability to use the kernel matrix for inner product operations in high-dimensional spaces, thereby finding a hyperplane to classify data in such spaces. The fused kernel matrix, containing multi-source information after feature mapping, provides higher-dimensional and more complex feature representations. Experimental results demonstrate significant performance improvements in the classification task of pancreatic cystic neoplasms, offering more reliable auxiliary information to physicians and holding substantial clinical application potential.

    参考文献
    相似文献
    引证文献
引用本文

武杰,徐真顺,张志伟,田慧,边云.融合多核学习和多源特征的胰腺囊性肿瘤分类方法[J].数据采集与处理,2025,40(1):247-257

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-11-06
  • 最后修改日期:2024-02-25
  • 录用日期:
  • 在线发布日期: 2025-02-23