基于相机类对比学习的完全无监督行人重识别
作者:
作者单位:

1.南京信息工程大学软件学院, 南京 210044;2.南京信息工程大学无锡研究院, 无锡 214101;3.南京大学计算机软件新技术国家重点实验室, 南京 210023

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62176128);江苏省自然科学基金(BK20231143);南京大学计算机软件新技术国家重点实验室开放课题(KFKT2022B06);中央高校基本科研基金(NJ2022028);江苏省“青蓝工程”人才计划项目。


Completely Unsupervised Person Re-identification Based on Camera Cluster Contrast Learning
Author:
Affiliation:

1.School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.Wuxi Institute of Technology, Nanjing University of Information Science and Technology, Wuxi 214101, China;3.State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    最近的无监督行人重识别研究使用聚类和记忆字典中的伪标签来训练模型。但是,这些研究忽略了行人重识别的数据集是通过不同相机采集的,即相机之间的分布差异较大,较大的相机方差会导致模型精度降低。因此,提出了相机类对比学习,包括类对比损失和相机对比损失,其中类对比损失可以实现对内存字典的一致性更新,并减少噪声标签对模型的影响;而相机对比损失通过为每个相机中的每个类构建相机类中心,拉近同属一个类的相机类中心距离,并使不同类的相机类中心距离相距更远,从而减少相机方差。通过相机类对比学习,减少了相机方差和噪声标签对模型的影响,从而提高了行人重识别的性能。在4个公开数据集上,相机类对比学习都表现出优异的结果,有效地缓解了相机方差对模型的影响。

    Abstract:

    Recent unsupervised person re-identification studies have used clustering and memory dictionaries for pseudo labels to train models. However, these studies ignore that the datasets of person re-identification are collected by different cameras, that is, the distribution difference between cameras is large, and a larger camera variance will lead to decrease in model accuracy. Therefore, camera cluster contrast learning is proposed, which includes cluster contrast loss and camera contrast loss. The cluster contrast loss can realize the consistent update of memory dictionary and reduce the influence of noise labels on the model. Camera contrast loss reduces camera variance by building camera cluster center for each cluster in each camera, narrowing the camera cluster center distance of the same cluster, and making different camera cluster centers farther apart. By camera cluster contrast learning, the impact of camera variance and noise labels on the model is reduced, and the performance of person re-identification is improved. On the four public datasets, camera cluster contrast learning has shown excellent results, effectively alleviating the impact of camera variance on the model.

    参考文献
    相似文献
    引证文献
引用本文

田青,周子枭.基于相机类对比学习的完全无监督行人重识别[J].数据采集与处理,2025,40(1):207-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-02-08
  • 最后修改日期:2024-03-23
  • 录用日期:
  • 在线发布日期: 2025-02-23