联合WPT和MEC的无线传感网时延优化算法
作者:
作者单位:

1.南京信息工程大学计算机学院,南京210044;2.北京工业大学信息科学技术学院,北京100124

作者简介:

通讯作者:

基金项目:

国家和北京市重点实验室基金(BGRIMM-KZSKL-2020-02);国家自然科学基金(62073006)。


Delay Optimization Algorithm in Wireless Sensor Networks Combining WPT and MEC
Author:
Affiliation:

1.School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China;2.School of Information Science and Technology,Beijing University of Technology,Beijing 100124,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    无线传感网络(Wireless sensor network, WSN)受电池能量有限和计算能力不足的约束,使得电池续航能力成为其广泛部署的瓶颈。本文利用无线电能传输(Wireless power transmission, WPT)和多接入边缘计算(Multi-access edge computing, MEC)技术,在传感器节点能耗受限的情况下,通过联合优化节点卸载决策、无线供电时长和带宽资源分配,最大限度地降低了传感器节点的任务平均完成时延。本文将优化问题建模成混合整数规划问题,并且为了适应复杂动态的信道环境,提出了一种基于柔性动作评价(Soft actor critic, SAC)的时延最小化深度强化学习算法(Deep reinforcement learning delay minimization, DrlDM),将原始优化问题建模成马尔可夫决策过程(Markov decision process, MDP)。仿真结果表明,与3种基线实验相比,本文提出的DrlDM算法平均延迟降低62.11%,显著缩短了节点的任务平均完成时间。

    Abstract:

    Wireless sensor network (WSN) is constrained by limited battery energy and insufficient computing power, and the limited battery life hinders its widespread deployment. In this paper, wireless power transmission (WPT) and multi-access edge computing (MEC) technologies are used to solve the problem of limited energy consumption of sensor nodes. By jointly optimizing the decision of the node offloading, wireless power supply duration and bandwidth resource allocation, the average task completion delay of sensor nodes is minimized to the greatest extent possible. The optimization problem is modeled as a mixed integer programming problem. In order to adapt to the complex and dynamic channel environment, a deep reinforcement learning delay minimization (DrlDM) algorithm based on soft actor critic (SAC) is proposed. The original optimization problem is modeled as a Markov decision process (MDP). Simulation results show that compared with three baseline experiments, the average delay of the DrlDM algorithm proposed in this paper is reduced by 62.11 %, significantly shortening the average task completion time of nodes.

    参考文献
    相似文献
    引证文献
引用本文

张健,刘鹏博,汤健.联合WPT和MEC的无线传感网时延优化算法[J].数据采集与处理,2025,40(1):163-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-23
  • 最后修改日期:2024-08-01
  • 录用日期:
  • 在线发布日期: 2025-02-23