空间通信载波多普勒频偏的局部聚类捕获算法
作者:
作者单位:

1.南京邮电大学物联网学院,南京 210003;2.南京大学计算机软件新技术全国重点实验室,南京 210023;3.南京邮电大学通达学院计算机工程学院,扬州 225127;4.北京邮电大学泛网无线通信教育部重点实验室,北京 100876

作者简介:

通讯作者:

基金项目:

江苏省研究生科研与实践创新计划(SJCX23_0288, SJCX24_0334);南京大学计算机软件新技术全国重点实验室资助项目(KFKT2024B41);北京邮电大学泛网无线通信教育部重点实验室资助项目(KFKT-2022105)。


Local-Clustering-Acquisition for Carrier Doppler-Shift in Space Communications
Author:
Affiliation:

1.School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;2.State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;3.School of Computer Engineering, Tongda College, Nanjing University of Posts and Telecommunications, Yangzhou 225127, China;4.Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    与地面通信不同,空间通信通常涉及相距很远且高速飞行的信号载体。此时,信号传输会面临两个困难:远距离路径损耗导致的低信噪比(Signal-to-noise-ratio, SNR)和高速相对运动引起的高动态多普勒频偏。针对多普勒频偏捕获,低SNR要求一个很长的累积周期来累积很多个信号。但是,在这个长累积周期内,高动态多普勒频偏扩散所有信号的总能量到一个很宽的频率区间。为解决此能量扩散问题,本文提出一种局部聚类捕获(Local-clustering-acquisition, LCA)算法。该算法首先利用全局范围内最大元素来构造一个局部范围,然后从局部范围内选择若干个较大元素并进行聚类,最后从聚类结果中搜索最大的簇来得到捕获结果。理论分析和仿真验证结果表明,相较于现有算法,LCA算法在提升捕获概率方面展现出显著优势。

    Abstract:

    Different from ground communications, space communications usually involve signal vehicles that travel over long-distance at a high speed. In these scenarios, the signal transmission faces two difficulties: A low signal-to-noise-ratio (SNR) caused by the long-distance path-loss and a dynamic Doppler-shift caused by the high-speed movement. For Doppler-shift acquisition, the low SNR requires a long-time accumulation to accumulate a large number of signals. However, during this period, the dynamic Doppler-shift disperses all signals’ total energy over a wide frequency range. To address the energy dispersion problem, this paper proposes a local-clustering-acquisition (LCA) algorithm. The LCA algorithm uses the largest elements from the global-ranges to construct a local-range, then selects some large elements from this local-range for clustering, and finally searches the largest cluster from the clustering results to obtain the acquisition result. Theoretical analysis and simulation validation results demonstrate the LCA algorithm’s significant advantages in increasing acquisition probability, as compared with the existing algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张兆维,王帅威,杜帅,吴同,邱帅博,刘琳,左加阔,潘甦.空间通信载波多普勒频偏的局部聚类捕获算法[J].数据采集与处理,2025,40(1):147-162

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-01-24
  • 最后修改日期:2024-09-27
  • 录用日期:
  • 在线发布日期: 2025-02-23