基于路径感知邻域的节点分类算法
作者:
作者单位:

1.山西大学计算机与信息技术学院,太原 030006;2.计算智能与中文信息处理教育部重点实验室(山西大学),太原 030006;3.山西大学智能信息处理研究所,太原 030006

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62072292);山西省1331工程项目;教育部产学合作协同育人项目(220902842025336)。


Path Connectivity Based Neighbor-Awareness Node Classification Algorithm
Author:
Affiliation:

1.College of Computer and Information Technology,Shanxi University,Taiyuan 030006, China;2.Key Laboratory of Computation Intelligence and Chinese Information Processing(Shanxi University),Ministry of Education,Taiyuan 030006, China;3.Institute of Intelligent Information Processing,Shanxi University,Taiyuan 030006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同节点的差异性。针对此,提出了一种基于路径感知邻域的节点分类算法(Path connectivity based neighbor-awareness node classification algorithm,PCNA),通过网络中的路径连通信息确定节点邻域,并自适应地感知不同长度路径对节点间相似性计算的影响权重,指导图卷积神经网络的邻域聚合过程。PCNA由邻域感知器和节点分类器组成,邻域感知器基于强化学习机制自适应地获取每个节点的聚合邻域及不同长度路径的影响权重,再利用节点间的路径连通信息得到相似性矩阵;节点分类器利用所得相似性矩阵进行邻域聚合得到节点表示,并进行节点分类。在8个真实数据集上与10种经典算法的对比实验表明了所提算法在节点分类任务上有较好的性能。

    Abstract:

    Graph convolutional neural networks obtain the node representation by aggregating the neighbor node information with high similarity,and selecting the appropriate neighborhood for the node and conducting effective aggregation are the keys to the graph convolutional networks. Most of the existing graph convolutional neural networks directly aggregate the node information in the multi-hop neighborhood,without considering the difference of the aggregation weights of different hop neighborhoods on different nodes in the network. Aiming at this,a path connectivity based neighbor-awareness node classification algorithm (PCNA) is proposed. The node neighborhood is determined by the path connectivity information in the network,and the influence weight of different length paths on the similarity calculation between nodes is adaptively perceived to guide the neighborhood aggregation process of graph convolutional neural network. Specifically,PCNA is composed of a neighborhood perceptron and a node classifier. The neighborhood perceptron adaptively obtains the aggregated neighborhood of each node and the influence weights of paths with different lengths based on the reinforcement learning mechanism,and then uses the path connectivity information between nodes to obtain the similarity matrix. The node classifier uses the obtained similarity matrix to perform neighborhood aggregation to obtain node representation and classify nodes. The comparison experiments with 10 classical algorithms on eight real datasets show that the proposed algorithm has better performance in node classification tasks.

    参考文献
    相似文献
    引证文献
引用本文

郑文萍,王晓敏,韩兆荣.基于路径感知邻域的节点分类算法[J].数据采集与处理,2025,40(1):134-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-06-23
  • 最后修改日期:2024-08-11
  • 录用日期:
  • 在线发布日期: 2025-02-23