毫米波低空无人机通感波束训练与追踪技术研究
作者:
作者单位:

1.浙江大学信息与电子工程学院,杭州 310027;2.中国电信股份有限公司浙江分公司,杭州 310040

作者简介:

通讯作者:

基金项目:


Research on mmWave Low-Altitude UAV ISAC Beam Training and Tracking Technology
Author:
Affiliation:

1.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;2.Hangzhou Branch, China Telecommunication Co., Ltd., Hangzhou 310040, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    受信息论的启发,针对毫米波(millimeter-Wave,mmWave)低空无人机(Unmanned aerial vehicle,UAV)场景的波束训练与目标定位追踪问题,分别提出了基于信道编码原理的分层波束训练算法和基于mmWave雷达感知的UAV目标定位跟踪算法。两种算法具有强鲁棒性和泛化性,不仅适用于静态和动态场景,还适用于远场、近场、多智能超表面(Reconfigurable intelligent surface,RIS)辅助通信、分布式无蜂窝网络场景,以及非法UAV入侵感知等多种通信与感知场景,并通过仿真和硬件平台进行测试。信道编码波束训练算法利用编码增益和纠错机制能够大幅提高训练准确率;mmWave雷达算法结合 Capon 波束形成、恒虚警率(Constant false alarm rate,CFAR)检测和基于噪声密度的聚类(Density-based spatial clustering of applications with noise,DBScan)实现了UAV的检测和跟踪。仿真和硬件测试结果均表明,本文算法在mmWave低空UAV场景下能够有效提高波束训练效率和感知定位精度,为低空经济进一步的繁荣发展提供技术支撑。

    Abstract:

    Aiming at the problems of beam training and target localization and tracking in millimeter-wave (mmWave) low-altitude unmanned aerial vehicle (UAV) scenarios, inspired by information theory, this paper proposes a hierarchical beam training algorithm based on the channel coding principle and a UAV target localization and tracking algorithm based on mmWave radar sensing, respectively. The proposed algorithms have high generalization and robustness, and are applicable not only to static and dynamic scenarios, but also to far-field, near-field, reconfigurable intelligent surface (RIS) assisted communication, and distributed cellular-free network scenarios, as well as illegal UAV intrusion sensing, etc. The algorithms are also validated through simulations and hardware platform tests. Specifically, the channel coding beam training algorithm can significantly improve the training accuracy by using coding gain and error correction mechanism. The mmWave radar algorithm combines Capon beam formation, constant false alarm rate (CFAR) detection and density-based spatial clustering of applications with noise (DBScan) to achieve UAV detection and tracking. Both simulation and hardware test results show that these algorithms can effectively improve the efficiency of beam training and the accuracy of sensing and localization in mmWave low-altitude UAV scenarios, providing technical support for the further prosperous development of low-altitude economy.

    参考文献
    相似文献
    引证文献
引用本文

徐媛,李心怡,沈嘉宇,黄崇文,杨照辉,施淑媛,王建斌.毫米波低空无人机通感波束训练与追踪技术研究[J].数据采集与处理,2025,40(1):56-71

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-12-30
  • 最后修改日期:2025-01-21
  • 录用日期:
  • 在线发布日期: 2025-02-23