集成自注意力机制的医学图像分割方法
作者:
作者单位:

上海理工大学光电信息与计算机工程学院,上海 200093

作者简介:

通讯作者:

基金项目:

国家重点研发计划资助项目(2021YFB2802300)。


Medical Image Segmentation Method with Integrated Self-attention
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对UNet架构在医学图像分割中捕捉局部特征及保留边缘细节的局限性,提出了一种融合自注意力机制的改进型UNet算法。该算法基于传统编码-解码结构,引入多尺度卷积(Multi-scale convolution, MSC)模块以实现多粒度特征提取,同时集成卷积-自注意力(Convolution mixer attention, CMA)模块,结合卷积层的局部特征建模和自注意力层的全局上下文建模。在BUSI和DDTI数据集分割任务中,相比现有经典网络架构,大量实验数据验证了本模型优异的分割能力。此外,统计学数据分析、消融实验进一步验证了MSC和CMA模块的有效性。该研究为高精度医学图像分割提供了一种创新方法,对于促进医学诊断的精确性和效率具有重要的理论与实践意义。

    Abstract:

    Aiming at the limitations of the UNet architecture in capturing local features and preserving edge details in medical image segmentation, this paper presents an improved UNet algorithm integrating self-attention mechanism. The proposed algorithm is based on traditional encoder-decoder structure, incorporating a multi-scale convolution (MSC) block for multi-granularity feature extraction, and a convolution mixer attention (CMA) block, which combines the modeling of local features by convolutional layers with global contextual modeling by self-attention layers. In the segmentation task of BUSI and DDTI datasets, compared with the existing classical network architecture, a large number of experimental data verify the excellent segmentation ability of the model. Additionally, Statistical data analysis and ablation studies further confirm the effectiveness of the MSC and CMA modules. This research provides an innovative approach for high-precision medical image segmentation, holding significant theoretical and practical implications for enhancing the accuracy and efficiency of medical diagnoses.

    参考文献
    相似文献
    引证文献
引用本文

赵凡,张学典.集成自注意力机制的医学图像分割方法[J].数据采集与处理,2024,(5):1240-1250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:2024-03-14
  • 录用日期:
  • 在线发布日期: 2024-10-14