轻度认知障碍分类中全脑功能连接的特征压缩分析
作者:
作者单位:

1.云南民族大学电气信息工程学院, 昆明 650500;2.云南省无人自主系统重点实验室, 昆明 650500

作者简介:

通讯作者:

基金项目:

国家自然科学基金(621610237);云南省教育厅科学研究基金(2023Y0498); 云南民族大学科研创新基金(2022SKY005)。


Feature Compression Analysis of Whole-Brain Functional Connection in Classification of Mild Cognitive Impairment
Author:
Affiliation:

1.School of Electrical and Information Engineering, Yunnan Minzu University, Kunming 650500, China;2.Yunnan Key Laboratory of Unmanned Autonomous System, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用静息态功能磁共振成像技术获取脑区的功能连接(Functional connection, FC)被广泛地应用于轻度认知功能障碍(Mild cognitive impairment, MCI)的分类研究中。然而,全脑FC用于分类通常存在信息冗余和特征维度灾难问题,为此,提出一种“G-Lasso +特征压缩”的新方法来解决以上问题。首先,利用盲源分离技术获得全脑功能脑区的活跃信号时间序列,采用G-Lasso构建FC稀疏网络;其次,计算MCI患者、正常被试及所有被试在组平均上的稀疏FC,并结合欧氏距离进行簇Class 1~Class 3中心判决,获取簇间差异特征信息;最后,将每个被试的稀疏FC表达为簇中心的线性组合,获取压缩的FC作为关键特征完成分类。实验采用公开的数据库测试本文方法,结果表明,所提方法进行Class判决后获得簇间特征具有显著差异且提供了有效的标志信息,进一步压缩获取关键特征的分类准确率(89.8%)比仅使用稀疏方法提高了5%~10%。该结果表明,为了解决全脑FC存在的问题,需要考虑到特征选择和降维,但有诸多不确定因素信息,可以适当地将“稀疏+压缩”进行结合。

    Abstract:

    The use of resting-state functional magnetic resonance imaging technology to obtain functional connection (FC) of brain regions is widely used in classification studies of mild cognitive impairment (MCI). However, the classification of whole-brain FC usually has the problems of information redundancy and feature dimension disaster. Therefore, a new method of “G-Lasso + feature compression” is proposed to solve the above problems. Firstly, the blind source separation technology is used to obtain the active signal time series of the whole brain functional brain region, and the FC sparse network is constructed by G-Lasso. Secondly, the sparse FC of MCI, normal subjects and all subjects on the group average is calculated, and the cluster Class 1—Class 3 center decision is performed in combination with the Euclidean distance to obtain the difference feature information between clusters. Finally, the sparse FC of each participant is expressed as a linear combination of the cluster center, and the compressed FC is obtained as the key feature to complete the classification. The results show that the proposed method obtains significant differences in inter-cluster features after Class decision and provides effective sign information. The classification accuracy of the key features obtained by further compressing (89.8%) is 5%—10% higher than that of the sparse method alone. The results show that in order to solve the problems of whole-brain FC, feature selection and dimensionality reduction need to be considered, but there are many uncertain factors, and “sparse + compression” can be appropriately combined.

    参考文献
    相似文献
    引证文献
引用本文

马佳,吴海锋,李顺良.轻度认知障碍分类中全脑功能连接的特征压缩分析[J].数据采集与处理,2024,(4):967-983

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-11-09
  • 最后修改日期:2024-01-24
  • 录用日期:
  • 在线发布日期: 2024-07-25