基于多模态超声对比学习的肝癌诊断方法
作者:
作者单位:

1.南京航空航天大学人工智能学院脑机智能技术教育部重点实验室,南京211106;2.南京大学医学院附属鼓楼医院,南京 210008

作者简介:

通讯作者:

基金项目:


Liver Cancer Diagnosis Method Based on Multi-modal Ultrasound Contrast Learning
Author:
Affiliation:

1.Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;2.Department of Ultrasound, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,肝癌已经成为严重威胁人类健康的疾病,多模态超声成像是其诊断的重要手段之一。与临床医生结合多模态超声诊断肝癌类似,利用多模态融合的方法集成各模态超声的影像特征有望提高肝癌诊断的准确性。然而,现有的多模态融合方法在融合过程中往往将各模态的特征信息孤立处理,未能充分考虑模态内的样本相似性和模态间的语义一致性,同时忽视了模态的不确定性。因此,提出了一种基于多模态超声对比学习的肝癌诊断方法,旨在充分利用各超声模态的特征信息,提高诊断准确率。该方法利用监督对比学习深入挖掘模态特征,捕获模态内同类样本之间的相似性信息和不同模态之间样本的语义一致性信息。此外,该方法基于主观逻辑引入了模态不确定度的度量,实现了模态信息的动态融合,具有较好的鲁棒性。多模态超声影像评估结果显示,本文提出的方法实现了85.21%诊断准确率,相较于主流的多模态融合方法性能得到了提升。

    Abstract:

    In recent years, liver cancer has become a disease that seriously threatens human health, and multi-modal ultrasound imaging is one of the important diagnostic tools for it. Similar to how clinicians use multi-modal ultrasound to diagnose liver cancer, using multi-modal fusion methods to integrate the image features of each ultrasound modality is expected to improve the accuracy of liver cancer diagnosis. However, the existing multi-modal fusion methods often isolate the feature information of each modality during the fusion process, failing to fully consider the intra-modal sample similarity and inter-modal semantic consistency, while ignoring modality uncertainty. Therefore, this paper proposes a liver cancer diagnosis method based on multi-modal ultrasound contrast learning, aiming to make full use of the feature information of each ultrasound modality to improve the diagnostic accuracy. Specifically, this method employs supervised contrastive learning to deeply explore modality features, capturing both the similarity information among samples within the modality and the semantic consistency information across different modalities. In addition, this method introduces a measure of modality uncertainty based on Subjective Logic, enabling dynamic fusion of modality information and exhibiting good robustness. Evaluation of multimodal ultrasound imaging shows that the proposed method achieves an 85.21% diagnostic accuracy, demonstrating performance improvement compared to other mainstream multimodal fusion methods.

    参考文献
    相似文献
    引证文献
引用本文

杨印凯,万鹏,石航,薛海燕,邵伟.基于多模态超声对比学习的肝癌诊断方法[J].数据采集与处理,2024,(4):874-885

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-05-20
  • 最后修改日期:2024-07-09
  • 录用日期:
  • 在线发布日期: 2024-07-25