基于多尺度残差融合图卷积网络的脑疾病诊断研究
作者:
作者单位:

河北工业大学人工智能与数据科学学院,天津300401

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62276088);河北省自然科学基金(F2023202072, H2023202901)。


Diagnosis of Brain Diseases Based on Multi-scale Residual Fusion Graph Convolutional Networks
Author:
Affiliation:

School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,功能性脑网络已被用于自闭症谱系障碍(Autism spectrum disorder, ASD)等脑部疾病的诊断。现有研究表明,将静息态功能磁共振成像(Resting-state functional magnetic resonance imaging, rs-fMRI)数据以及非影像信息结合起来构成人口图,然后采用图神经网络(Graph neural network, GNN)进行学习和分类的方法对ASD的诊断十分有效。然而,大多数研究仍然面临两个挑战:一是仅使用皮尔森相关系数等方法构建功能连接矩阵无法有效地识别和分析与疾病相关的局部脑区和生物标志物;二是无法在GNN上有效地学习人口图中节点特征的多尺度信息。为解决这些问题,提出了一种基于注意力机制的多尺度残差融合图卷积网络(Multi-scale residual fusion graph convolutional networks, MSRF-GCN)。该算法通过设计一个功能连接生成器来提取具有远程依赖关系的时间相关特征,从而有效地定位和识别对诊断有益的脑区。同时,通过设计多尺度残差融合算法,学习人口图中的多尺度信息。此外,还引入了Edge Sparse策略,通过随机丢弃初始人口图中的边,以增加节点连接的稀疏性,进而减少训练期间过拟合的风险。通过在自闭症脑影像数据交换项目(Autism brain imaging data exchange, ABIDE)上进行实验的结果证明了MSRF-GCN在ASD诊断方面的有效性。

    Abstract:

    In recent years, functional brain networks have been used in the diagnosis of brain disorders such as autism spectrum disorder (ASD). Existing studies have shown that combining resting-state functional magnetic resonance imaging (rs-fMRI) data as well as non-imaging information to form a population graph, and then learning and classifying the data by using graph neural network (GNN) is very effective in the diagnosis of ASD. However, most studies still face two challenges: First, the construction of functional connectivity matrices using methods such as Pearson correlation coefficient cannot effectively identify and analyze localized brain regions and biomarkers associated with diseases; second, it is difficult to efficiently learn multi-scale information about node features in population graphs on GNN. To solve these problems, a multi-scale residual fusion graph convolutional networks (MSRF-GCN) based on the attention mechanism is proposed. The algorithm efficiently localizes and identifies brain regions useful for diagnosis by designing a functional connection generator to extract temporally relevant features with remote dependencies. Meanwhile, the multi-scale information in the population graph is learned by designing a multi-scale residual fusion algorithm. The Edge Sparse strategy is also introduced to increase the sparsity of node connections by randomly discarding edges in the initial population graph, which in turn reduces the risk of overfitting during training. The effectiveness of MSRF-GCN in the diagnosis of ASD is demonstrated by the results of experiments performed on the autism brain imaging data exchange (ABIDE) program.

    参考文献
    相似文献
    引证文献
引用本文

郝小可,何子龙,卢欣楚,马明明,刘时宇.基于多尺度残差融合图卷积网络的脑疾病诊断研究[J].数据采集与处理,2024,(4):827-842

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-06-09
  • 最后修改日期:2024-07-10
  • 录用日期:
  • 在线发布日期: 2024-07-25