CI-WGAN:融合临床指标和WGAN的孤独症个体化脑功能连接网络生成
作者:
作者单位:

1.电子科技大学生命科学与技术学院,成都 611731;2.麦吉尔大学蒙特利尔神经研究所,蒙特利尔 H3A 2B4;3.北京大学基础医学院神经生物学系,北京 100191;4.北京大学神经科学研究所,北京 100191;5.神经科学教育部重点实验室,北京 100191;6.卫健委神经科学重点实验室,北京 100191;7.北京大学医学部孤独症研究中心,北京 100191

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62276050);四川省科技计划资助项目(2024NSFSC0655)。


CI-WGAN: Integrating Clinical Indicators and WGAN for Generating Individualized Brain Functional Connectivity Networks in Autism Spectrum Disorder
Author:
Affiliation:

1.School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;2.Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada;3.Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China;4.Neuroscience Research Institute, Peking University, Beijing 100191, China;5.Key Laboratory for Neuroscience, Ministry of Education of China, Beijing 100191, China;6.Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Beijing 100191, China;7.Autism Research Center of Peking University Health Science Center, Beijing 100191, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    脑功能连接(Functional connectivity, FC)网络作为潜在的脑影像标志物对孤独症谱系障碍(Autism spectrum disorder, ASD)的辅助诊疗研究具有重要作用。然而现有的FC生成方法大多仅基于脑影像数据,未充分考虑个体的临床指标从而易丢失疾病的特异性信息。而且,ASD作为一种谱系障碍,其临床指标存在显著的个体化差异。因此,仅基于脑影像数据的传统生成模型在生成准确的且能反映个体化临床指标的ASD个体FC的任务上存在挑战。针对上述挑战,提出了个体化临床指标引导的沃瑟斯坦生成对抗网络模型(Clinical-indicator-aware Wasserstein generative adversarial network, CI-WGAN),用于生成孤独症个体化FC网络。该模型引入个体化临床指标引导机制,实现了高精度ASD患者FC网络的生成。基于全世界最大孤独症脑影像公开数据集之一的ABIDE I数据集进行实验,CI-WGAN生成FC与真实FC的峰值信噪比(Peak signal-to-noise ratio, PSNR)、结构相似度(Structural similarity, SSIM)与平均绝对误差(Mean absolute error,MAE)分别达到19.037、0.236与0.178,相较于其他FC生成模型分别提升了3%、12%与2%。此外基于生成FC和独立临床验证指标的表征相似度分析(Representational similarity analysis, RSA),CI-WGAN生成的FC相较其他模型生成FC最少提高了0.1倍和3.7倍,证明了CI-WGAN生成的FC包含更多的ASD个体特异性信息。本文提出的CI-WGAN模型实现了高质量个体化FC的生成,为ASD的早期诊断和个性化治疗提供了有力的技术支持。

    Abstract:

    Brain functional connectivity (FC) networks serve as potential neuroimaging biomarkers for the auxiliary diagnosis and treatment of autism spectrum disorder (ASD). However, most existing models are merely based on neuroimaging data and neglect individual clinical indicators, leading to the loss of disorder-specific information. And, ASD is a spectrum disorder exhibiting significant individual differences in terms of clinical indicators. Therefore, these traditional generative models are limited in generating accurate individual FC of ASD that reflects specific clinical symptoms. To address this limitation, a novel clinical-indicator-aware Wasserstein generative adversarial network (CI-WGAN) is proposed to generate individual FC of ASD. The proposed model introduces an effective guidance mechanism based on individual clinical indicators to generate individualized FC networks. Extensive experiments are performed on ABIDE I dataset, one of the largest publicly available ASD brain imaging datasets. The results show that the generated FC of the proposed method achieves promising peak signal-to-noise ratio (PSNR) of 19.037, structural similarity (SSIM) of 0.236 and mean absolute error (MAE) of 0.178, showing satisfying improvements of 3%, 12% and 2% respectively compared to the traditional models. Additionally, the representational similarity analysis (RSA) are performed between the generated FC and two independent clinical indicators. The results show that the RSA values based on the proposed method increase by 0.1 and 3.7 times compared to those based on traditional models, demonstrating that the FC generated via the proposed CI-WGAN contains more individual symptom information of ASD. In summary, the proposed CI-WGAN model achieves high-quality generation of individual FC, and provides a powerful tool for the early diagnosis and personalized treatment of ASD.

    参考文献
    相似文献
    引证文献
引用本文

孙海林,严加栋,张嵘,KENDRICK Keith,蒋希. CI-WGAN:融合临床指标和WGAN的孤独症个体化脑功能连接网络生成[J].数据采集与处理,2024,(4):813-826

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-06-10
  • 最后修改日期:2024-07-03
  • 录用日期:
  • 在线发布日期: 2024-07-25