基于全局图振幅排列熵的EEG心算分类研究
作者:
作者单位:

1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,南京 210023;2.南京邮电大学射频集成与微组装技术国家地方联合工程实验室,南京 210023

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61977039);中国教育技术协会新基建+高校信息化研究项目(202205007)。


Research on EEG Mental Arithmetic Classification Based on Amplitude Permutation Entropy for Global Graph
Author:
Affiliation:

1.College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.National Joint Engineering Laboratory of RF Integration and Microassembly Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    心算是生活中常使用到的技能,涉及到多种引起大脑活动变化认知加工环节,对于心算的脑电(Electroencephalogram,EEG)研究有助于提高对认知任务的研究水平。本文提出了一种全局图振幅排列熵(Amplitude permutation entropy for global graph,APEGG)应用于脑电心算研究,以弥补传统图排列熵(Permutation entropy for graph,PEG)无法全面反映脑网络节点周边邻居节点变化的缺陷,克服了脑电信号幅值不敏感的问题。首先采用相位锁定值构建了EEG脑网络,分析多导联脑电信号之间的同步性和相关性,然后计算了不同频段下脑网络的全局图振幅排列熵,最后运用支持向量机(Support vector machine,SVM)进行分类。使用脑电心算公开数据集进行仿真,分析了不同频段的心算状态与静息状态的熵值散点图,两种状态的熵值散点图表现出较大差异。心算状态与静息状态分类结果与其他算法比较表现出更好的效果。

    Abstract:

    Mental arithmetic is a skill commonly used in daily life. It involves various cognitive processing processes that cause changes in brain activity, so research on its electroencephalogram (EEG) can help improve the level of research on cognitive tasks. Amplitude permutation entropy for global graph (APEGG) is proposed to apply to the study of EEG mental arithmetic, to make up that the traditional permutation entropy for graph (PEG) can not fully reflect changes of the neighboring nodes around brain network nodes, and overcome the problem of insensitive EEG signal amplitude. At first, the EEG brain network is constructed using the phase locking value (PLV), the synchronization and correlation between multi-lead EEG signals are analyzed, and then the amplitude permutation entropy for global graph of the brain network at different frequency bands is calculated. Finally, support vector machine (SVM) is used for classification. EEG in public data sets is used for simulation, and the mental state of different frequency bands and resting state entropy scatterplot are analyzed, showing a larger difference. The classification results show better results compared with other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

王盛淋,邱祥凯,王汝清,黄丽亚.基于全局图振幅排列熵的EEG心算分类研究[J].数据采集与处理,2024,(3):724-735

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-03-13
  • 最后修改日期:2023-05-17
  • 录用日期:
  • 在线发布日期: 2024-05-25