基于多模态多粒度融合网络的癫痫识别方法
作者:
作者单位:

南通大学信息科学与技术学院, 南通 226019

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62102199)。


Epilepsy Identification Method Based on Multi-modal Multi-grained Fusion Network
Author:
Affiliation:

School of Information Science and Technology, Nantong University, Nantong 226019, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    结构脑网络(Structural brain network, SC)和功能脑网络(Functional brain network, FC)能从不同角度反映癫痫对大脑结构信息的改变。目前,融合两类脑网络信息进行癫痫的辅助诊断已成为领域内的重要研究之一。然而,常见的融合模型仅在单一粒度上融合两类脑网络信息,忽略了脑网络的多粒度属性。本文提出一种基于多模态多粒度融合网络(Multi-modal multi-grained fusion network,MMFN)的癫痫识别方法,从全局和局部两个粒度对多模态脑网络特征进行融合,充分利用两类脑网络信息。局部粒度上,设计了连接边特征融合和节点特征融合,用以重构两类脑网络的连接边层和节点层的特征图,使两个模态交互式地学习特征;全局粒度上,设计了多模态分解双线性池化模块,学习两类脑网络的联合表示。实验结果表明,相比主流方法,所提方法可以显著提高对癫痫识别的准确率,辅助医生进行癫痫诊断。

    Abstract:

    Structural brain network (SC) and functional brain network (FC) can reflect the changes in brain structure information caused by epilepsy from different perspectives. Currently, the fusion of two types of brain network information for auxiliary diagnosis of epilepsy has become one of the important studies in the field. However, common fusion models only fuse the information of the two types of brain networks at a single granularity, ignoring the multi-grained attribute of brain networks. This paper proposes an epilepsy identification method based on multi-modal multi-grained fusion network (MMFN), which integrates the features of the multi-modal brain network from global and local granularities to take full advantage of multi-modal brain network information. Specifically, at the local granularity, two modules (i.e., edge features fusion module and node features fusion module) are designed to reconstruct the feature maps of edge layer and node layer of two types of brain network, so that these two modes can learn features interactively. At the global granularity, a multimodal decomposition bilinear pooling module is designed to learn the joint representation of the two types of brain networks. Compared to current methods, experimental results show that the proposed method can improve the accuracy of epilepsy recognition significantly and assist doctors in the diagnosis of epilepsy.

    参考文献
    相似文献
    引证文献
引用本文

戚晓雨,丁卫平,鞠恒荣,程学云,黄嘉爽.基于多模态多粒度融合网络的癫痫识别方法[J].数据采集与处理,2024,(3):710-723

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-05-08
  • 最后修改日期:2023-10-08
  • 录用日期:
  • 在线发布日期: 2024-05-25