融合类增强与多尺度自适应的小样本学习方法
作者:
作者单位:

上海理工大学光电信息与计算机工程学院,上海200093

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61673276,61603255)。


Few-Shot Learning Method Based on Class Enhancement and Multi-scale Adaptation
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解决小样本学习存在特征信息提取不足、难以准确地捕获局部明显特征信息的问题,提出了一种融合类增强与多尺度自适应的小样本学习方法。首先在特征的层面上对图像进行类增强,通过将特征图的每次激活与其邻域相关联来编码丰富的语义结构,使提取后的类内特征明显,更利于当前的分类任务。其次通过多尺度特征生成来提取不同尺度上图像特征的低层表示。最后对每个尺度上的语义相关矩阵进行权重分配与相似元素最大化计算查询图像与各支持集类别图像之间的语义相似度,多尺度信息进行融合后,对目标图像进行分类。在5-way 1-shot和5-way 5-shot设置中,该方法在miniImageNet数据集上的均值平均精度(mean Average precision,mAP)分别为56.83%和75.76%,在常用细粒度图像数据集Stanford Cars和CUB-200-2011分类基准上分别达到了79.33%和93.92%、66.33%和85.78%,均优于现有方法的最好结果。

    Abstract:

    In order to solve the problems of the insufficient feature information extraction and the difficulty in capturing local obvious feature information accurately in few-shot learning, a method combining class enhancement and multi-scale adaptation is proposed. Firstly, the class enhancement is performed on the image at the level of features, and rich semantic structures are encoded by associating each activation of the feature map with its neighborhood, thus making the extracted intra class features obvious and more conducive to the current classification task. Secondly, low-level representations of image features at different scales are extracted through multi-scale feature generation. Finally, the semantic correlation matrix on each scale is weighted and similarity elements are maximized to calculate the semantic similarity between the query image and each support set category image. After the fusion of multi-scale information, the target images are classified. In the 5-way 1-shot and 5-way 5-shot settings, the mean average precision (mAP) of this method on the miniImageNet dataset is 56.83% and 75.76% respectively, and it achieves 79.33% and 93.92%, 66.33% and 85.78% on the commonly used fine grained image dataset Standard Cars and CUB-200-2011 classification benchmarks, respectively, which are superior to the best results of the existing methods.

    参考文献
    相似文献
    引证文献
引用本文

董驰静,张孙杰,任涵.融合类增强与多尺度自适应的小样本学习方法[J].数据采集与处理,2024,(3):689-698

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-03-21
  • 最后修改日期:2023-06-22
  • 录用日期:
  • 在线发布日期: 2024-05-25