基于Transformer的路网轨迹重建方法
作者:
作者单位:

1.北方工业大学信息学院,北京 100144;2.大规模流数据集成与分析技术北京市重点实验室(北方工业大学),北京 100144

作者简介:

通讯作者:

基金项目:

北京市自然科学基金(4202021)。


Map-Constrained Trajectory Recovery Mechanism Based on Transformer
Author:
Affiliation:

1.School of Information, North China University of Technology, Beijing 100144, China;2.Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data (North China University of Technology), Beijing 100144, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    轨迹重建是针对低采样轨迹数据进行轨迹补充还原的一类轨迹数据处理研究。为了提高轨迹重建的准确性,一些工作通过引入Seq2Seq等深度学习模型来提升轨迹重建的效率与精度,但由于现有工作忽略了轨迹间的长距离依赖问题,导致轨迹还原中还存在准确率不高等问题。本文提出一种基于Transformer的轨迹重建模型ZTrajRec(Zero-based trajectory recovery),通过Transformer编码器捕获轨迹间的长距离依赖,注意力机制用于当前轨迹和历史轨迹相似性查询来进行轨迹在路网上的重建。实验结果表明,在真实北京出租车数据集上,ZTrajRec比基准模型最好效果在召回率上提升3%~4%。本文最后对重建结果进行了可视化分析以展示其合理性。

    Abstract:

    Trajectory reconstruction is a research field for trajectory restoration of low-sampling rate trajectory data. In recent years, in order to improve the accuracy of trajectory reconstruction, some work used deep learning models such as Seq2Seq to improve the efficiency and accuracy of trajectory recovery. However, most of the existing work ignores the long-distance dependencies between trajectory points, resulting in poor accuracy for trajectory reconstruction. Therefore, this paper proposes a trajectory recovery model, called ZTrajRec (Zero-based trajectory recovery) based on Transformer, which captures the long-distance dependency between trajectories through Transformer encoder, and uses the attention mechanism to take into account the similarity between current trajectory and historical trajectories to reconstruct the trajectory directly on the road network. Experimental results show that, on the real Beijing taxi dataset, ZTrajRec improves the recall rate by 3%—4%, compared to the results of the benchmark models. Finally, the result is visually analyzed to demonstrate its plausibility.

    参考文献
    相似文献
    引证文献
引用本文

梅宇生,赵卓峰.基于Transformer的路网轨迹重建方法[J].数据采集与处理,2024,(3):678-688

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-07-20
  • 最后修改日期:2023-10-10
  • 录用日期:
  • 在线发布日期: 2024-05-25