一种基于稀疏优化和Nesterov动量策略的模型剪枝算法
作者:
作者单位:

陆军炮兵防空兵学院信息工程系,合肥 230031

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62076252)。


Model Pruning Algorithm Based on Sparse Optimization and Nesterov Momentum Strategy
Author:
Affiliation:

Department of Information Engineering, PLA Army Academy of Artillery and Air Defense, Hefei 230031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着深度学习快速发展,模型的参数量和计算复杂度爆炸式增长,在移动终端上部署面临挑战,模型剪枝成为深度学习模型落地应用的关键。目前,基于正则化的剪枝方法通常采用L2正则化并结合基于数量级的重要性标准,是一种经验性的方法,缺乏理论依据,精度难以保证。受Proximal梯度方法求解稀疏优化问题的启发,本文提出一种能够在深度神经网络上直接产生稀疏解的Prox-NAG优化方法,并设计了与之配套的迭代剪枝算法。该方法基于L1正则化,利用Nesterov动量求解优化问题,克服了原有正则化剪枝方法对L2正则化和数量级标准的依赖,是稀疏优化从传统机器学习向深度学习的自然推广。在CIFAR10数据集上对ResNet系列模型进行剪枝实验,实验结果证明Prox-NAG剪枝算法较原有剪枝算法性能有所提升。

    Abstract:

    With the rapid development of deep learning, the number of parameters and computational complexity of models have exploded, which pose challenges for deployment on mobile terminals. Model pruning has become the key to the implementation and application of deep learning models. At present, the pruning method based on regularization usually adopts L2 regularization combined with the importance standard based on the order of magnitude. It is an empirical method lacking theoretical basis, and its accuracy is difficult to guarantee. Inspired by the Proximal gradient method for solving sparse optimization problems, we propose a Prox-NAG optimization method that can directly generate sparse solutions on deep neural networks and a corresponding iterative pruning algorithm is designed. This method is based on L1 regularization and uses Nesterov momentum to solve the optimization problem. It overcomes the dependence of the original regularization pruning method on L2 regularization and order of magnitude standards, and is a natural extension of sparse optimization from traditional machine learning to deep learning. Pruning experiments are conducted on the ResNet series models on the CIFAR10 dataset, and the results show that the Prox-NAG pruning algorithm has improved its performance compared to the original pruning algorithm.

    参考文献
    相似文献
    引证文献
引用本文

周强,陈军,鲍蕾,陶卿.一种基于稀疏优化和Nesterov动量策略的模型剪枝算法[J].数据采集与处理,2024,(3):659-667

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-06-29
  • 最后修改日期:2023-09-20
  • 录用日期:
  • 在线发布日期: 2024-05-25