基于多重注意力和schatten-p范数的息肉分割网络
作者:
作者单位:

1.河南师范大学计算机与信息工程学院,新乡 453007;2.河南师范大学河南省教育人工智能与个性化学习重点实验室,新乡 453007

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61901160, U1904123)。


Polyp Segmentation Network Based on Multiple Attention and schatten-p Norm
Author:
Affiliation:

1.College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China;2.Henan Key Laboratory of Educational Artificial Intelligence and Personalized Learning, Henan Normal University, Xinxiang 453007,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    自动准确的息肉定位分割方法可以在结直肠癌病变早期及时地发现息肉,大大降低癌变几率。编解码结构作为近年来息肉分割中最主流的网络结构,已经得到了很大的改进,如提高模型捕获全局上下文特征和局部特征的能力,使用深层特征对浅层解码做指导。但是息肉形状和大小不一,在编码时,由于卷积特性容易过于陷入局部信息挖掘,而失去远程信息依赖关系;还有一些息肉图像存在对比度低、空间复杂的特性,导致息肉与背景两者极易混淆。本文提出了基于多重注意力和schatten-p 范数的息肉分割网络。其中,轴向多重注意力模块利用轴向注意力补充图像中的远程上下文关系,同时补充对边缘、背景信息的关注以实现特征互补,在注意全局特征的同时加强对局部细节特征的捕捉;利用矩阵奇异值和矩阵隐含信息的关联性,引入schatten-p 范数作约束,从矩阵角度分析数据,辅助模型辨别前景和背景。通过设置大量实验,证明了本文提出方法的有效性,并且MASNet在Kvasir-SEG数据集上对比不同的方法,取得了较好的分割结果。

    Abstract:

    Automatic and accurate polyp localization and segmentation methods can detect polyps in a timely manner in the early stage of colorectal cancer lesions, greatly reducing the risk of cancer transformation. The encoder-decoder architecture, as the most mainstream network structure in polyp segmentation in recent years, has been greatly improved, such as improving the model’s ability to capture global contextual and local features, and using deep features to guide shallow decoding. However, polyps vary in shape and size, and due to their convolutional nature, they are prone to getting too caught up in local information mining and losing remote information dependencies during encoding. Some polyp images also have low contrast and complex spatial characteristics, which makes it easy to confuse the polyp with the background. Based on this, this paper proposes a polyp segmentation network based on multiple attention and schatten-p norm(MASNet). Among them, the axial multiple attention module utilizes axial attention to supplement remote contextual relationships in the image, while also paying attention to boundary and background information to achieve feature complementarity. It enhances the capture of local detail features while paying attention to global features. By utilizing the correlation between matrix singular values and matrix implicit information, the schatten-p norm is introduced as a constraint to analyze the data from a matrix perspective and assist the model in distinguishing foreground and background. By setting up a large number of experiments, the effectiveness of the proposed method is proven, and MASNet achieves the best segmentation results by comparing different advanced methods on the Kvasir-SEG dataset.

    参考文献
    相似文献
    引证文献
引用本文

李苏,刘国奇,刘栋,赵曼琪.基于多重注意力和schatten-p范数的息肉分割网络[J].数据采集与处理,2024,(1):223-235

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-05-10
  • 最后修改日期:2023-09-05
  • 录用日期:
  • 在线发布日期: 2024-01-25