图引导的特征融合和分组对比学习的域自适应语义分割
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,昆明 650500;2.昆明理工大学云南省人工智能重点实验室,昆明 650500

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62161015,61966021)。


Graph-Guided Feature Fusion and Group Contrastive Learning for Domain Adaptation Semantic Segmentation
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;2.Key Laboratory of Artificial Intelligence of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在无监督域自适应语义分割任务中,有效地融合源域和目标域的特征以及解决不同类别像素数量分布不均衡的问题是提升跨域语义分割网络性能的关键。为了充分融合源域和目标域的特征,建立源域和目标域之间的长距离上下文关系,本文构建了双跨域图卷积网络,利用图卷积来引导源域和目标域的特征进行融合。本文分别构造了跨域位置相似矩阵和通道相似矩阵,提出了跨域位置图卷积和跨域通道图卷积。为了解决数据集中存在的类不平衡问题,同时提取到更多域不变特征,本文提出了分组对比学习策略,通过在组内构造正负样本,拉近2个域相同类之间的距离并拉远2个域不同类之间的距离。实验证明,本文提出的方法在数据集GTA5到Cityscapes和SYNTHIA到Cityscapes上的跨域语义分割均取得了良好的效果。

    Abstract:

    Considering the problem of unsupervised domain adaption semantic segmentation, it is very important to establish a long-distance context relationship between the source domain and the target domain and how to solve the problem of unbalance distribution of different classes of pixels. we propose a dual cross-domain graph convolution network to exploit the long-distance context between source and target domain and fuse the feature of two domains. Specifically, we construct the position similarity matrix and channel similarity matrix of the cross domain and propose the cross-domain position graph convolution and cross-domain channel graph convolution. In order to solve the problem of unbalanced distribution of classes in the datasets and capture more domain invariant feature, we propose a group contrastive learning strategy to narrow the distance between the same class of two domains and widen the distance between the different classes of two domains by constructing positive and negative samples in the group. A large number of experiments show that our method achieves good performance on Urban Scene datasets GTA5 to Cityscapes and SYNTHA to Cityscapes.

    参考文献
    相似文献
    引证文献
引用本文

赵伟枫,谢明鸿,张亚飞,李华锋.图引导的特征融合和分组对比学习的域自适应语义分割[J].数据采集与处理,2024,(1):154-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-11-20
  • 最后修改日期:2023-05-16
  • 录用日期:
  • 在线发布日期: 2024-01-25