面向雷达图像分类模型的两步式对抗样本检测技术
作者:
作者单位:

南京航空航天大学计算机科学与技术学院,南京 211106

作者简介:

通讯作者:

基金项目:


A Two-Step Adversarial Sample Detection Technique for SAR Image Classification
Author:
Affiliation:

College of Computer Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    深度学习技术极大地提高了雷达图像目标分类的精度,但由于神经网络自身的脆弱性使得雷达图像分类系统的安全性受到威胁。本文对雷达对抗样本的攻击性及雷达对抗样本与原始样本在频率域上的差异性进行了分析,并在此基础上,提出了两步式雷达对抗样本检测技术来提升雷达分类模型的安全性。首先基于频率域对输入的雷达图像进行第1步对抗样本检测,分离出对抗样本,然后将剩下的图像分别送入到一个经过对抗训练的模型和一个未经过对抗训练的模型进行第2次对抗样本检测。通过这种两步式的检测方法,可以有效地检测出对抗样本,检测成功率不低于95.73%,有效提升了雷达分类模型的安全性。

    Abstract:

    Deep learning techniques have greatly improved the classification accuracy of synthetic aperture radar (SAR) images target, but the security of SAR image classification systems is threatened by the inherent vulnerability of neural networks. In this paper, we analyze the aggressiveness of SAR adversarial samples, and the difference between SAR adversarial examples and original examples in the frequency domain. With the analysis results, a two-step SAR adversarial samples detection technique is proposed to improve the security of SAR classification models. The first step of adversarial sample detection is performed on the input image based on the frequency domain analysis to separate the adversarial samples. Then, the remaining images are fed into an adversarial trained model and an untrained model to complete the second step of adversarial sample detection. By using this two-step detection method, the adversarial samples can be effectively detected with a detection success rate of no less than 95.73%, effectively improving the security of the SAR classification model.

    参考文献
    相似文献
    引证文献
引用本文

王见,张赛楠,陈芳.面向雷达图像分类模型的两步式对抗样本检测技术[J].数据采集与处理,2024,(1):106-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-03-07
  • 最后修改日期:2023-06-16
  • 录用日期:
  • 在线发布日期: 2024-01-25