基于数字孪生和强化学习的低空智联网协同认知干扰
作者:
作者单位:

1.南京航空航天大学公共实验教学部,南京211106;2.南京航空航天大学电子信息工程学院,南京211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62371232)。


Cooperative Cognitive Jamming in Low-Altitude Intelligent Network Based on Digital Twin and Reinforcement Learning
Author:
Affiliation:

1.Public Experimental Teaching Department, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China;2.College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对低空智联网协同认知干扰决策过程中,多架电子干扰无人机对抗多部多功能雷达的干扰资源分配问题,提出了一种基于数字孪生和深度强化学习的认知干扰决策方法。首先,将协同电子干扰问题建模为马尔可夫决策问题,建立认知干扰决策系统模型,综合考虑干扰对象、干扰功率和干扰样式选择约束,构建智能体动作空间、状态空间和奖励函数。其次,在近端策略优化(Proximal policy optimization, PPO)深度强化学习算法的基础上,提出了自适应学习率近端策略优化(Adaptive learning rate proximal policy optimization, APPO)算法。同时,为了以高保真的方式提高深度强化学习算法的训练速度,提出了一种基于数字孪生的协同电子干扰决策模型训练方法。仿真结果表明,与已有的深度强化学习算法相比,APPO算法干扰效能提升30%以上,所提训练方法能够提高50%以上的模型训练速度。

    Abstract:

    To address the issue of resource allocation for multiple electronic jamming unmanned aerial vehicles (UAVs) against multiple multifunctional radars in the low-altitude intelligent network cooperative cognitive jamming decision-making process, a cognitive jamming decision-making approach based on digital twinning and deep reinforcement learning is proposed. Firstly, a cognitive jamming decision-making system model is established by treating the cooperative electronic jamming problem as a Markov decision process. Considering the constraints related to jamming target, jamming power, and jamming pattern selection comprehensively, the agents’ action space, state space, and reward function are constructed. Secondly, an adaptive learning rate proximal policy optimization (APPO) algorithm is proposed based on the proximal policy optimization (PPO) algorithm. Additionally, to enhance the training speed of the deep reinforcement learning algorithm in a high-fidelity manner, a digital twin-based cooperative electronic jamming decision-making model training method is presented. Simulation results demonstrate that compared with existing deep reinforcement learning algorithms, the interference efficiency of the APPO algorithm is improved by more than 30%, and the proposed training method increases the model training speed by more than 50%.

    参考文献
    相似文献
    引证文献
引用本文

沈高青,蔡圣所,雷磊,贲德.基于数字孪生和强化学习的低空智联网协同认知干扰[J].数据采集与处理,2024,(1):15-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-12-11
  • 最后修改日期:2024-01-15
  • 录用日期:
  • 在线发布日期: 2024-01-25