改进YOLOv5的轻量化交通标志检测算法
作者:
作者单位:

1.南京信息工程大学自动化学院,南京 210044;2.东南大学自动化学院,南京 210096

作者简介:

通讯作者:

基金项目:

国家自然科学联合基金重点项目(U21B2027)。


Improved Lightweight Traffic Sign Detection Algorithm of YOLOv5
Author:
Affiliation:

1.College of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.School of Automation, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着当今时代科技和人工智能的高速发展,人们越来越倾向于无人驾驶这项技术。考虑到安全问题,针对驾驶过程中交通标志的实时检测问题,在YOLOv5模型的基础上做出改进,提出了一种轻量化的交通标志检测算法。在模型的特征融合部分加入了注意力机制,可以使模型更加突出目标特征。在检测层前加入一种轻量化的亚像素卷积层,在不增加计算量的基础上,有效地提高检测特征图的分辨率。对损失函数CIoU(Complete intersection over union)加以改进,加快了网络的收敛速度,并且收敛效果较改进前有了一定提升。实验结果表明,本文模型准确率可达到90.6%,较基础网络提高了14.5%,检测速度可达到70 帧/s,基本满足对交通标志的实时精准检测。

    Abstract:

    With the rapid development of science and technology and artificial intelligence, people are more and more inclined to driverless technology. Considering the safety problem, aiming at the real-time detection of traffic signs during driving, the algorithm is improved on the basis of YOLOv5 model, and a lightweight traffic sign detection algorithm is proposed. The attention mechanism is added to the feature fusion part of the model, which can make the model more prominent target features. Then a lightweight sub-pixel convolution layer is added in front of the detection layer to effectively improve the resolution of the detection feature map without increasing the amount of computation. Finally, the loss function CIoU (Complete intersection over union) is improved, which speeds up the convergence speed of the network, and the convergence effect is better than that before the improvement. The experimental results show that the accuracy of this model reaches 90.6%, which is 14.5% higher than the basic network, and the detection speed reaches 70 frames / s, which basically meets the real-time accurate detection of traffic signs.

    参考文献
    相似文献
    引证文献
引用本文

贾子豪,王文青,刘光灿.改进YOLOv5的轻量化交通标志检测算法[J].数据采集与处理,2023,38(6):1434-1444

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-07-24
  • 最后修改日期:2022-11-08
  • 录用日期:
  • 在线发布日期: 2023-11-25