MAFDNet:复杂环境下图像自适应分类新方法
作者:
作者单位:

1.江西师范大学计算机信息工程学院,南昌 330022;2.江西师范大学教育学院,南昌 330022

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62167005,61966018);江西省教育厅重点科研项目(GJJ200302)。


MAFDNet:A New Method of Image Adaptive Classification in Complex Environment
Author:
Affiliation:

1.College of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022, China;2.College of Education, Jiangxi Normal University, Nanchang 330022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    复杂环境下,往往困难样本和简单样本并存,现有分类方法主要针对困难样本进行设计,所构建网络用于分类简单样本时会造成计算资源的浪费;而网络修剪和权重量化等方法则不能同时兼顾模型的准确度和存储开销。为提升计算资源的使用效率并有更好的准确率,本文着眼于输入样本的空间冗余,提出了复杂环境下图像自适应分类网络MAFDNet,并引入置信度作为分类准确性的判断,同时提出了由内容损失、融合损失和分类损失组成的自适应损失函数。MAFDNet由3个子网组成,输入图像首先被送入到低分辨率子网中,该子网有效提取了低分辨率的特征,具有高置信度的样本先被识别并从网络中提前退出,低置信度的样本则需要依次进入更高分辨率的子网中,而网络中的高分辨率子网具有识别困难样本的能力。MAFDNet将分辨率自适应和深度自适应结合在一起,通过实验表明,在相同计算资源条件下,MAFDNet在CIFAR-10、CIFAR-100和ImageNet这3个复杂环境数据集上的top-1准确率均得到提升。

    Abstract:

    In complex environments, difficult samples and simple ones often coexist. The existing classification methods are mainly designed for difficult samples, and the constructed network causes a waste of computing resources when it is used to classify simple ones. However, network pruning and weight quantization couldn’t take into account both accuracy and storage cost. To promote the efficiency of computing resources with better accuracy, focusing on the spatial redundancy of input samples, this paper proposes an adaptive image classification network MAFDNet in complex environment, introduces the confidence as the classification accuracy of judgment, and puts forward the adaptive loss function composed of the content loss, fusion loss and classification loss at the same time. MAFDNet consists of three subnets. The input images are first sent to the low-resolution subnet, which effectively extracts low-resolution features. Samples with high confidence are first identified and removed from the network in advance, while samples with low confidence need to enter the subnet with higher resolution in turn. The high resolution subnet in the network has the ability to identify difficult samples. MAFDNet combines resolution adaptive and depth adaptive. Through experiments, the top-1 accuracy of MAFDNet is improved in CIFAR-10, CIFAR-100 and ImageNet data sets under the same computing resource conditions.

    参考文献
    相似文献
    引证文献
引用本文

叶继华,黎欣,陈进,江爱文,化志章,万文涛. MAFDNet:复杂环境下图像自适应分类新方法[J].数据采集与处理,2023,38(6):1392-1405

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-03-05
  • 最后修改日期:2023-04-06
  • 录用日期:
  • 在线发布日期: 2023-11-25