基于隐语义模型的物联网资源发现算法
作者:
作者单位:

1.南京大学信息管理学院,南京210023;2.江苏省人民医院,南京210096;3.南京邮电大学通信与信息工程学院,南京210003;4.教育部泛在网络健康服务系统工程研究中心,南京210003

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2018YFC1314900);江苏省前沿引领技术基础研究专项(BK20202001);江苏省工业和信息产业转型升级专项资金(苏财工贸〔2021〕92 号)。


IoT Resource Discovery Algorithm Based on Latent Factor Model
Author:
Affiliation:

1.School of Information Management,Nanjing University, Nanjing 210023,China;2.Jiangsu Province Hospital,Nanjing 210096,China;3.College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003,China;4.Engineering Research Center of Health Service System Based on Ubiquitous Wireless Networks, Ministry of Education, Nanjing 210003,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于物联网中服务数量的海量性、设备状态的动态变化性等特点,传统的互联网中基于关键词的“被动式”语义服务搜索技术将不再适用于物联网环境,如何利用并分析用户和设备之间大量的交互信息来给用户推荐与之最相关的设备资源是物联网中资源发现算法的关键。为此,首先给出一种基于超图理论的物联网用户-设备交互的表示模型并配以对应的表示矩阵,基于该模型提出了物联网业务场景中的资源推荐问题,并将该问题转换成基于矩阵分解的相关程度预测问题,最后引入最优化理论中的交替最小二乘法(Alternating least squares, ALS)来求解矩阵的最优化分解问题,进而提出一种基于隐语义模型的资源推荐算法,并与传统推荐系统中基于物品的协同过滤算法(ItemCF)在均方根误差(Root mean square error, RMSE)和平均绝对误差(Mean absolute error, MAE)等方面作对比,实验结果证明了本文所提出的推荐算法的有效性。

    Abstract:

    The traditional keyword-based “passive” semantic service search technology in the Internet will no longer be applicable to the internet of things (IoT) environment due to the sharp growth of sensors as well as the frequent change of device state. How to utilize and analyze a large amount of interactive information between users and devices to recommend the most relevant equipment resources according to users’ preference is the key of resource discovery algorithm in IoT. A representation model of user-device interaction based on hypergraph theory was presented and matched with corresponding representation matrix. Based on this model, the resource recommendation problem which can be transformed into a correlation degree prediction problem based on matrix decomposition was formulated. Then the alternating least squares (ALS) method in optimization theory was introduced here to tackle this optimal decomposition problem. Finally, the IoT resource recommendation algorithm based on latent factor model was proposed. The simulation proved that the proposed approach outperformed item-based collaborative filtering (ItemCF) algorithm in terms of root mean square error (RMSE) and mean absolute error (MAE).

    参考文献
    相似文献
    引证文献
引用本文

单涛,钱琪杰,景慎旗,叶继元,郭永安,刘云.基于隐语义模型的物联网资源发现算法[J].数据采集与处理,2023,38(6):1369-1379

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-12
  • 最后修改日期:2022-05-12
  • 录用日期:
  • 在线发布日期: 2023-11-25