融合多特征和双向图分类的专家推荐方法
作者:
作者单位:

淮阴工学院计算机与软件工程学院,淮安 223003

作者简介:

通讯作者:

基金项目:

国家自然科学基金青年项目(62002131)。


Expert Recommendation Method Combining Multi-features and Bi-directional Graph Classification
Author:
Affiliation:

Faculty of Computer and Software, Huaiyin Institute of Technology, Huaian 223003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    专家推荐是推荐系统领域的一个研究热点,专家信息特征提取的合理性直接影响到推荐的准确性。然而多数专家推荐方法未对多源信息构建特征关系文本图,忽略了属性特征之间的相关性,以及无法依据关联性拓展知识领域特征。针对以上问题本文提出了一种融合多特征和双向图分类的专家推荐方法CMFBG。首先通过多源信息融合获取专家个体多特征信息,并对不同属性特征构建类内文本图;然后分别使用基于Transformer的双向编码器表示(Bidirectional encoder representation from transformer, BERT)模型和图卷积神经网络(Graph convolutional network, GCN)模型对特征提取并融合;最后通过双向注意力机制增强源数据对图特征的扩展,实现图结构上的分类。在同一专家数据集上进行实验分析,结果表明在图分类任务中CMFBG精确率高于其他算法,达到了91.71%。

    Abstract:

    Expert recommendation is a research hotspot in the field of recommendation system. The rationality of expert information feature extraction directly affects the accuracy of recommendation. However, most expert recommendation methods donot build text graphs of feature relation for multi-source information, and ignore the correlation between attribute features. Additionally, most expert recommendation methods cannot expand the features of knowledge field according to the relevance of text graph. Therefore, we propose CMFBG, an expert recommendation method combining multi-features and bi-directional graph classification. Specifically, CMFBG obtains multi-feature information of experts through multi-source information fusion, and construct text graphs for different attribute features within categories. Then, CMFBG employs bidirectional encoder representation from transformer (BERT) and graph convolutional network (GCN) models to extract features and fuse them. Finally, CMFBG employs the bidirectional attention mechanism to enhance the extension of the source data to the graph features and realize the classification of the graph structure. The experimental analysis on the same expert data set shows that the precision of CMFBG is 91.71% higher than other algorithms in the task of graph classification.

    参考文献
    相似文献
    引证文献
引用本文

丁婧娴,李翔,孙纪舟,周泓.融合多特征和双向图分类的专家推荐方法[J].数据采集与处理,2023,38(5):1214-1225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-10-18
  • 最后修改日期:2022-11-08
  • 录用日期:
  • 在线发布日期: 2023-09-25