基于交互注意力的突发事件评论对象情感分析
作者:
作者单位:

1.江苏海洋大学计算机工程学院,连云港 222005;2.江苏省海洋资源开发研究院,连云港 222005

作者简介:

通讯作者:

基金项目:

国家自然科学基金(72174079);江苏省“青蓝工程”优秀教学团队项目(2022-29);江苏海洋大学“研究生科研与实践创新计划项目”(KYCX2021-055)。


Aspect-Based Sentiment Analysis of Emergencies Based on Interactive Attention
Author:
Affiliation:

1.School of Computer Engineering, Jiangsu Ocean University, Lianyungang 222005, China;2.Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现有突发事件网民情感分析研究多为粗粒度的情感分析,为了精准地分析突发事件中网民对不同对象的情感,提出一种基于RoBERTa词嵌入和交互注意力的突发事件细粒度情感分析方法。通过构建RoBERTa-CRF评论对象抽取模型,完成突发事件相关评论对象的抽取。利用交互注意力机制和预训练模型构建RoBBETa-IAN模型,实现评论对象的情感分析。最后,分析突发事件中网民对不同对象的情感,并可视化展示。在构建的微博新闻评论数据集上,RoBERTa-CRF评论对象抽取模型和RoBERTa-IAN情感分析模型的F1值分别为0.76和0.79。

    Abstract:

    In order to accurately analyze the sentiment of Internet users towards different objects in breaking events, a method of fine-grained sentiment analysis of breaking events based on RoBERTa word embedding and interactive attention is proposed. By constructing a RoBERTa-CRF comment object extraction model, the extraction of comment objects related to breaking events is completed. The RoBBETa-IAN model is constructed using the interactive attention mechanism and pre-training model to achieve the sentiment analysis of comment objects. Finally, the sentiments of Internet users towards different objects in breaking events are analyzed and visualised. On the constructed Weibo news comment dataset, the F1 values of the RoBERTa-CRF comment object extraction model and the RoBERTa-IAN sentiment analysis model are 0.76 and 0.79 respectively.

    参考文献
    相似文献
    引证文献
引用本文

仲兆满,黄贤波,熊玉龙.基于交互注意力的突发事件评论对象情感分析[J].数据采集与处理,2023,38(5):1206-1213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-09-15
  • 最后修改日期:2022-11-23
  • 录用日期:
  • 在线发布日期: 2023-09-25