基于深度强化学习的雷达智能抗干扰决策FPGA加速器设计
作者:
作者单位:

南京航空航天大学电子信息工程学院, 南京 211106

作者简介:

通讯作者:

基金项目:


Design of FPGA Accelerator for Radar Intelligent Anti-jamming Decision-Making Based on Deep Reinforcement Learning
Author:
Affiliation:

College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics,Nanjing 211106,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对高动态环境下的雷达连续智能抗干扰决策和高实时性需求问题,本文构建了一种适用于雷达智能抗干扰决策的深度Q网络(Deep Q network,DQN)模型,并在此基础上提出了一种基于现场可编程门阵列(Field programmable gate array,FPGA)的硬件决策加速架构。在该架构中,本文设计了一种雷达智能决策环境交互片上访问方式,通过片上环境量化存储和状态迭代计算简化了DQN智能体连续决策时的迭代过程,在实现智能体深度神经网络的并行计算与流水控制加速的同时,进一步提升了决策实时性。仿真和实验结果表明,在保证决策正确率的前提下,所设计的智能抗干扰决策加速器相比已有的基于CPU平台的决策系统,在单次决策中实现了约46倍的速度提升,在连续决策中实现了约84倍的速度提升。

    Abstract:

    Aiming at the continuous intelligent anti-jamming decision-making and high real-time requirements of radar in high-dynamic environment, this paper constructs a deep Q network (DQN) model for radar intelligent anti-jamming decision-making, and proposes a hardware decision acceleration architecture based on field programmable gate array(FPGA). In this architecture, an on-chip access mode is designed for radar intelligent decision-making environment interaction to improve real-time performance, which simplifies the iterative process of continuous decision-making of the DQN agent through the on-chip quantitative storage and state iterative calculation for environment interaction. In the proposed architecture, both the parallel computing and pipeline control acceleration of agent deep neural network are adopted, which further improves the real-time performance of decision-making. Simulation and experimental results show that, on the premise of ensuring the accuracy of decision-making, the designed intelligent anti-jamming decision-making accelerator achieves a speedup of nearly 46 times in single decision-making and a speedup of nearly 84 times in continuous decision-making compared with the existing decision-making system based on the CPU platform.

    参考文献
    相似文献
    引证文献
引用本文

李梓瑜,葛芬,张劲东,赵家琛.基于深度强化学习的雷达智能抗干扰决策FPGA加速器设计[J].数据采集与处理,2023,38(5):1151-1161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-13
  • 最后修改日期:2022-08-28
  • 录用日期:
  • 在线发布日期: 2023-09-25