基于子图相似性的多动症患者脑网络分析
作者:
作者单位:

1.武汉科技大学冶金自动化与检测技术教育部工程中心,武汉 430081;2.浙江大学控制科学与工程学院, 杭州 310058

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62176192, 62173259, 62101392)。


Brain Network Analysis of Patients with ADHD Based on Subnetwork Similarity
Author:
Affiliation:

1.Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan 430081, China;2.College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多动症会严重影响儿童发育,对多动症患者的有效诊断受到广泛关注。该文结合脑网络的拓扑结构信息和图上的信号,提出一种基于稀疏表示的图相似性计算方法,从微观到宏观分析脑区之间的差异。该方法使用Pearson相关系数构建全连通脑网络,基于稀疏表示从底层结构中提取节点子网络,根据图核函数计算子网络相似性,最后给出了脑网络相似性的全局指标。以受试者间的相似性作为特征在公共数据集ADHD-200上的分类实验结果表明,该方法能够以93.1%的准确度区分多动症患者和健康对照者,分类性能明显优于其他已有算法。此外,结果表明多动症患者在中央前回、丘脑、海马和脑岛等脑区之间有更强的连接。

    Abstract:

    Attention deficit hyperactivity disorder (ADHD) seriously affects children’s development, so extensive attention has been paid to its effective diagnosis. A new method for calculating graph similarity is proposed, which combines the topological information of brain networks with signals on the network. The Pearson correlation coefficient is used to construct the fully connected brain network. Based on the sparse representation, the node subnetwork is extracted from the underlying structure, and the similarity of the subnetwork is calculated according to the graph kernel function. Finally, the global index of brain network similarity is given. Experimental results of classifying ADHD-200 in the public dataset characterized by similarity between subjects show that the proposed method can distinguish ADHD patients and healthy people with 93.1% accuracy, and the classification performance is significantly superior than other existing methods. In addition, it is found that ADHD patients have stronger connections in brain regions, such as anterior central gyrus, thalamus, hippocampus and insula.

    参考文献
    相似文献
    引证文献
引用本文

汪鑫欣,宋笑影,柴利.基于子图相似性的多动症患者脑网络分析[J].数据采集与处理,2023,38(5):1142-1150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-09-05
  • 最后修改日期:2023-05-02
  • 录用日期:
  • 在线发布日期: 2023-09-25