改进的基于YOLOv3的人脸检测算法
作者:
作者单位:

南京工业大学计算机科学与技术学院,南京 211816

作者简介:

通讯作者:

基金项目:


Improved Face Detection Algorithm Based on YOLOv3
Author:
Affiliation:

College of Computer Science and Technology, Nanjing TECH University, Nanjing 211816, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对因背景与人脸高度相似和人脸目标尺度过小而导致的人脸检测精度较低的问题,提出了一种改进的基于YOLOv3的人脸检测算法。首先使用遗传算法改进原算法中随机初始化的影响,生成更符合目标大小的预测框,其次用轻量级网络改进原特征提取网络,提高人脸检测速度,最后使用边框回归损失代替YOLOv3坐标损失函数并改进置信度损失函数以提升训练收敛速度和结果精度。所设计的算法模型在Wider Face数据集上的检测精度和速度得到了提升。

    Abstract:

    Aiming at the low accuracy of face detection caused by the high similarity between background and face and the small scale of face target, an improved face detection algorithm based on YOLOv3 is proposed. Firstly, the K-means clustering algorithm based on genetic algorithm is used to improve the influence of random initialization in the original algorithm and generate a prediction frame more in line with the target size. Secondly, the lightweight network is used to improve the original feature extraction network and improve the face detection speed. Finally, the frame regression loss is used to replace the YOLOv3 coordinate loss function and the confidence loss function is improved to improve the training convergence speed and result accuracy. The accuracy and speed of the designed face algorithm are improved on Wider Face dataset.

    参考文献
    相似文献
    引证文献
引用本文

胡一帆,秦岭,杨小健.改进的基于YOLOv3的人脸检测算法[J].数据采集与处理,2023,38(5):1092-1103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-24
  • 最后修改日期:2022-09-15
  • 录用日期:
  • 在线发布日期: 2023-09-25