SiamBM:实现更佳匹配的Siamese目标跟踪网络
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院,南京 210044;2.南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044

作者简介:

通讯作者:

基金项目:


SiamBM: Siamese Object Tracking Network for Better Matching
Author:
Affiliation:

1.College of Electronics and Information Engineering, Nanjing University of Information Technology, Nanjing 210044, China;2.Jiangsu Collaborative Innovation Center for Atmospheric Environment and Equipment Technology,Nanjing University of Information Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于孪生网络的目标跟踪算法通常采用简单的互相关匹配方式,然而这种简单的匹配方式会引入大量无关信息,弱化目标区域的响应。基于无锚框的孪生跟踪网络虽然避免了锚框参数的调整,但由于失去了先验性信息,并不能很好地适应目标物的尺度变化。因此,针对上述所存在的问题,本文提出了一种基于孪生网络的目标跟踪匹配增强算法SiamBM。通过将目标的边界框坐标信息进行编码,为跟踪模型提供有效的指导信息;采用深度可分离互相关级联像素匹配互相关的方式,进一步提高跟踪模型的判别能力;采用多尺度互相关的方式,增强跟踪模型的尺度适应能力。在OTB100数据集上,SiamBM的成功率和精确率分别达到了0.684和0.906,相比基准模型分别提高了5.2%和4.2%。实验结果表明,与目前主流的跟踪器相比,SiamBM取得了相当有竞争力的结果,在各项数据集指标上取得了优越的性能。

    Abstract:

    Object tracking algorithms based on Siamese networks usually adopt simple cross-correlation matching, but this simple matching method will introduce a lot of irrelevant information and weaken the response of the target region. Although the Siamese tracking network without anchor frame avoids the adjustment of anchor frame parameters, it cannot adapt well to the scale change of the target due to the loss of priori information. Therefore, aiming at the above problems, this paper proposes a object tracking matching enhancement algorithm SiamBM based on Siamese networks. By encoding the boundary frame coordinate information of the target, effective guidance information is provided for the tracking model. The discriminant ability of the tracking model is further improved by means of depth separable cross-correlation and cascade pixel matching cross-correlation. Multi-scale cross-correlation is adopted to enhance the scale adaptability of the tracking model. In the OTB100 dataset, the success rate and accuracy rate of SiamBM reached 0.684 and 0.906, respectively, which increased by 5.2% and 4.2% compared with the benchmark model. The experimental results show that compared with the current mainstream trackers, SiamBM has achieved quite competitive results and superior performance in various dataset indicators.

    参考文献
    相似文献
    引证文献
引用本文

胡昭华,刘浩男,林潇. SiamBM:实现更佳匹配的Siamese目标跟踪网络[J].数据采集与处理,2023,38(5):1079-1091

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-21
  • 最后修改日期:2022-11-17
  • 录用日期:
  • 在线发布日期: 2023-09-25