结构约束下的生成对抗深度图修复
作者:
作者单位:

1.西南交通大学计算机与人工智能学院,成都 610031;2.可持续城市交通智能化教育部工程研究中心,成都 610031;3.四川省制造业产业链协同与信息化支撑技术重点实验室,成都 610031

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62376231);四川省重点研发项目(2023YFG0267,2023YFS0202);中央高校基本科研业务费科技创新项目(2682021ZTPY030,2682022KJ045)。


Generate Adversarial Depth Repair Under Structural Constraints
Author:
Affiliation:

1.School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 610031, China;2.Engineering Research Center of Sustainable Urban Intelligent Transportation, Chengdu 610031, China;3.Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, Chengdu 610031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    不同于纹理图像,深度图像中的像素点代表采集设备到场景各点的距离,直接使用通用图像修复方法并不能有效恢复深度图像中缺失区域的场景结构,本文提出一个两阶段编解码结构的生成对抗网络以解决深度图像修复问题。与常见生成对抗网络(Generative adversarial networks,GAN)模型不同,本文的生成器网络包括深度生成G1和深度修复G2两个模块。G1模块从RGB图像得到预测深度,替换待修复深度图像缺失区域,保证修复区域局部结构一致性。G2模块引入RGB图像边缘结构,保证全局结构一致性。针对现有图像修复方法没有考虑到修复区域间的一致性问题,设计结构一致注意力模块(Structure coherent attention,SCA)加入到G2中改善修复效果。本文提出的深度图像修复模型在主流数据集上进行了验证,利用结构约束并经过两阶段的生成器模型和判别器模型的共同作用,有效改善了深度图像修复效果。

    Abstract:

    Unlike RGB images, pixels in depth images represent the distance from the acquisition device to the points of the scene, and the direct use of inpainting methods for the natural image can not effectively restore the scene structure of missing areas in deep images. This paper proposes a two-stage code structure generation counter-network to solve the problem of deep image inpainting. Unlike standard generative adversarial network (GAN) models, the generator network in this paper includes depth build G1 and depth repair G2 modules. G1 obtains the predicted depth from the RGB image, replacing the missing area of the depth image to be repaired, and ensuring the local structure consistency of the repair area. G2 introduces RGB image edge structure to ensure global structure consistency. The consistency of the missing areas, which is not considered in the existing image inpainting methods, is solved by a structure consistency attention module (SCA) embeded into G2. The proposed depth image repairing model is verified on several mainstream data sets, showing that the effect of structural constraints, and the combination of the generator and discriminator is evident.

    参考文献
    相似文献
    引证文献
引用本文

卢奇,龚勋.结构约束下的生成对抗深度图修复[J].数据采集与处理,2023,38(5):1048-1057

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-03-24
  • 最后修改日期:2023-03-11
  • 录用日期:
  • 在线发布日期: 2023-09-25