改进全卷积神经网络的甲状腺结节分割方法
作者:
作者单位:

南京工业大学计算机科学与技术学院,南京 211816

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61701222)。


Improved FCN Segmentation Method for Thyroid Nodules
Author:
Affiliation:

College of Computer Science and Technology,Nanjing Technology University,Nanjing 211816,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN) 分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔 (Atrous spatial pyramid pooling, ASPP) 模块与多层特征传递模块(Feature transfer, FT),并采用LinkNet模型中Decoder模块进行上采样,VGG16主干网络实现特征提取下采样。实验采用来自斯坦福AIMI(Artificial intelligence in medicine and imaging)共享数据集的17 413张超声甲状腺结节图像分别用于训练、验证和测试。实验结果表明,相比于其他多种分割模型,本文模型在平均交并比(mean Intersection over union,mIoU),Dice相似系数,F1分数3个分割指标上分别达到了79.7%,87.6%和98.42%,实现了更好的分割效果,有效地提升了甲状腺结节的分割精确度。

    Abstract:

    In order to segment thyroid nodules more accurately, this paper proposes an improved fully convolutional network (FCN) segmentation model. Compared with FCN, the atrous spatial pyramid pooling (ASPP) module and the multi-layer feature transfer (FT) module are added. The decoder module in LinkNet model is used for up-sampling, and the VGG16 backbone network is used for feature extraction down-sampling. The experiment uses 17 413 ultrasound thyroid nodule images from Stanford AIMI shared data set for training, verification and testing, respectively. Experimental results show that compared with other segmentation models, the proposed model achieves 79.7%, 87.6% and 98.42% in mean intersection over union (mIoU), Dice similarity coefficient and F1 score respectively, achieving better segmentation effect and effectively improving the segmentation accuracy of thyroid nodules.

    参考文献
    相似文献
    引证文献
引用本文

张雅婷,帅仁俊,黄道宏,赵宸,吴梦麟.改进全卷积神经网络的甲状腺结节分割方法[J].数据采集与处理,2023,38(4):873-885

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-06-14
  • 最后修改日期:2022-12-23
  • 录用日期:
  • 在线发布日期: 2023-07-25