一种可用于鉴别肝癌呼气信号的改进AdaBoost算法
作者:
作者单位:

1.上海理工大学健康科学与工程学院, 上海 200093;2.上海健康医学院医疗器械学院, 上海 201318;3.上海健康医学院附属嘉定中心医院上海市分子影像学重点实验室,上海 201318

作者简介:

通讯作者:

基金项目:

国家自然科学基金(82127807);国家重点研发计划(2020YFA0909000);上海市分子影像学重点实验室建设项目(18DZ2260400)。


An Improved AdaBoost Algorithm for Identifying Breath Signals of Liver Cancer
Author:
Affiliation:

1.School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;2.Medical Instrumentation College, Shanghai University of Medicine &Health Sciences, Shanghai 201318, China;3.Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出一种改进的AdaBoost强化学习算法,并将其应用于鉴别健康者和肝癌患者的呼气信号。首先采集志愿者(包括健康对照组和肝癌患者)的呼气信号,利用Relief算法提取其主要特征;接着融合Stacking 模型,基于传统的机器学习算法训练得到若干基分类器组,构建一个个子分类器。为减少训练样本对分类器性能的影响,利用K折交叉,先后得到k个基分类器,形成一个基分类器组;进一步,由投票法得到该基分类器组,即子分类器对测试集的预测结果;然后根据各子分类器对训练集的预测错误率调整训练样本,并获得各子分类器的权重系数;最后将多个子分类器的预测结果进行加权组合,得到最终预测结果。实验结果表明,相比传统的AdaBoost算法,改进的AdaBoost算法在鉴别肝癌呼气和健康对照组呼气时,错误率明显下降,鲁棒性有所提升。该算法在鉴别肝癌呼气时,准确率可以达到90%左右,特异性和精确度也均超过95%。因此,改进的AdaBoost算法可有效提升肝癌呼气鉴别精度,对通过呼气鉴别肝癌、实现早期诊断的研究具有重要意义。

    Abstract:

    An improved AdaBoost reinforcement learning algorithm is proposed for distinguishing the breath signals of healthy patients and liver cancer patients. First, the breath signals of volunteers, including healthy controls and liver cancer patients, are collected and their main features are extracted by Relief algorithm. Then, based on Stacking model, several groups of base classifiers are trained by traditional machine learning algorithms and some sub-classifiers are then constructed. To reduce the influence of training samples on the classifier performance, a K-fold crossover is applied, and k base classifiers could be successively obtained to form a base classifier group. Further, the prediction results of this base classifier group, i.e., sub-classifiers on the test set, are obtained by the voting method. Then, according to the prediction error rate of each sub-classifier on the training set, the training set is updated and the weight coefficients of each sub-classifier are obtained according to the prediction error rate of each sub-classifier on the training set. Finally, the prediction results of multiple sub-classifiers are weighted and combined to obtain the final prediction results. Experimental results show that the improved AdaBoost algorithm can achieve an accuracy of about 90% and the specificity and precision are more than 95% in discriminating the breath of liver cancer from the breath of healthy controls. Compared with the traditional AdaBoost algorithm, the proposed algorithm has significantly lower error rate and improved robustness when used for liver cancer breath detection. Therefore, the improved AdaBoost algorithm can effectively improve the accuracy of liver cancer breath identification, which is important for the research of identifying liver cancer by breath for early diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

郝丽俊,黄钢.一种可用于鉴别肝癌呼气信号的改进AdaBoost算法[J].数据采集与处理,2023,38(4):860-872

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-07-11
  • 最后修改日期:2022-09-10
  • 录用日期:
  • 在线发布日期: 2023-07-25